- Последовательное и параллельное соединение конденсаторов
- Примеры расчетов
- Вас могут заинтересовать и другие калькуляторы из группы «Электротехнические и радиотехнические калькуляторы»:
- Как правильно соединять конденсаторы?
- Как рассчитать общую ёмкость соединённых конденсаторов?
- Что ещё необходимо знать, чтобы правильно соединять конденсаторы?
- Для электролитических конденсаторов.
- Параллельное соединение конденсаторов
- Напряжение при параллельном соединении
- Ток при последовательном соединении
- Последовательное соединение конденсаторов
- Падение напряжения и общая емкость при последовательном соединении
- Как рассчитать емкость одного устройства
- Способы соединения конденсаторов
- Последовательное соединение
- Параллельное подключение
- Где и для чего используются
- Общая емкость смешанного соединения конденсаторов
- Что он из себя представляет и как работает
- ССЫЛКИ ПО ТЕМЕ:
- Типы конденсаторов
- Понятие о приборе
- Какая общая емкость при подключении устройств
- Почему электролитические конденсаторы выходят из строя и что делать
- Как подобрать замену
- Как подключать конденсаторы
- Параллельное подключение конденсаторов
- Расчёт суммарной ёмкости
- Пример расчёта
- Последовательное соединение
- Как определить ёмкость последовательно соединенных конденсаторов
- Пример расчёта
Последовательное и параллельное соединение конденсаторов
Соединение конденсаторов в электрической цепи может быть последовательным, параллельным и последовательно-пареллельным (смешанным). Если провести аналогию между соединением конденсаторов и соединением резисторов, то стоит отметить, что формулы расчета общей емкости и общего сопротивления идентичны, только между разными типами соединений: Формула Cобщ при параллельном соединении конденсаторов = формула Rобщ при последовательном соединении резисторов.
- Cобщ — общая емкость.
- Rобщ — общее сопротивление.
При последовательном соединении конденсаторов (рис. 3) на обкладках отдельных конденсаторов электрические заряды по величине равны: Q1 = Q2 = Q3 = Q. Действительно, от источника питания заряды поступают лишь на внешние обкладки цепи конденсаторов, а на соединенных между собой внутренних обкладках смежных конденсаторов происходит лишь перенос такого же по величине заряда с одной обкладки на другую (наблюдается электростатическая индукция), поэтому и на них по- являются равные и разноименые электрические заряды.
Соединения конденсаторов.
Напряжения между обкладками отдельных конденсаторов при их последовательном соединении зависят от емкостей отдельных конденсаторов: U1 = Q/C1, U1 = Q/C2, U1 = Q/C3, а общее напряжение U = U1 + U2 + U3. Общая емкость равнозначного (эквивалентного) конденсатора C = Q / U = Q / (U1 + U2 + U3), т. е. при последовательном соединении конденсаторов величина, обратная общей емкости, равна сумме обратных величин емкостей отдельных конденсаторов. Формулы эквивалентных емкостей аналогичны формулам эквивалентных проводимостей.
Материал в тему: все о переменном конденсаторе.
Примеры расчетов
Пример: Общая емкость соединенных последовательно конденсаторов емкостью 330нанофарада и 390нанофарада
Пример: Общая емкость соединенных последовательно конденсаторов емкостью 4,3нанофарада и 5,1нанофарада
Пример: Общая емкость соединенных последовательно конденсаторов емкостью 100нанофарад и 120нанофарад
Пример: Общая емкость соединенных последовательно конденсаторов емкостью 470нанофарад и 560нанофарад
Пример: Общая емкость соединенных последовательно конденсаторов емкостью 22нанофарад и 27нанофарад
Пример: Общая емкость соединенных последовательно конденсаторов емкостью 680нФ и 820нФ
Пример: Общая емкость соединенных последовательно конденсаторов емкостью 51нФ и 62нФ
Пример: Общая емкость соединенных последовательно конденсаторов емкостью 30нФ и 36нФ
Пример: Общая емкость соединенных последовательно конденсаторов емкостью 62нанофарад и 75нанофарад
Пример: Общая емкость соединенных последовательно конденсаторов емкостью 120нанофарада и 150нанофарада
Вас могут заинтересовать и другие калькуляторы из группы «Электротехнические и радиотехнические калькуляторы»:
Калькулятор резистивно-емкостной цепи
Калькулятор параллельных сопротивлений
Калькулятор параллельных индуктивностей
Калькулятор импеданса конденсатора
Калькулятор импеданса катушки индуктивности
Калькулятор взаимной индукции
Калькулятор взаимоиндукции параллельных индуктивностей
Калькулятор взаимной индукции — последовательное соединение индуктивностей
Калькулятор импеданса параллельной RC-цепи
Калькулятор импеданса параллельной LC-цепи
Калькулятор импеданса параллельной RL-цепи
Калькулятор импеданса параллельной RLC-цепи
Калькулятор импеданса последовательной RC-цепи
Калькулятор импеданса последовательной LC-цепи
Калькулятор импеданса последовательной RL-цепи
Калькулятор импеданса последовательной RLC-цепи
Калькулятор аккумуляторных батарей
Калькулятор литий-полимерных аккумуляторов для дронов
Калькулятор индуктивности однослойной катушки
Калькулятор индуктивности плоской спиральной катушки для устройств радиочастотной идентификации (RFID) и ближней бесконтактной связи (NFC)
Калькулятор расчета параметров коаксиальных кабелей
Калькулятор светодиодов. Расчет ограничительных резисторов для одиночных светодиодов и светодиодных массивов
Калькулятор цветовой маркировки резисторов
Калькулятор максимальной дальности действия РЛС
Калькулятор зависимости диапазона однозначного определения дальности РЛС от периода следования импульсов
Калькулятор радиогоризонта и дальности прямой радиовидимости РЛС
Калькулятор радиогоризонта
Калькулятор эффективной площади антенны
Симметричный вибратор
Калькулятор частоты паразитных субгармоник (алиасинга) при дискретизации
Калькулятор мощности постоянного тока
Калькулятор мощности переменного тока
Калькулятор пересчета ВА в ватты
Калькулятор мощности трехфазного переменного тока
Калькулятор преобразования алгебраической формы комплексного числа в тригонометрическую
Калькулятор коэффициента гармонических искажений
Калькулятор законов Ома и Джоуля — Ленца
Калькулятор времени передачи данных
Калькулятор внутреннего сопротивления элемента питания батареи или аккумулятора
Калькуляторы Электротехнические и радиотехнические калькуляторы
Как правильно соединять конденсаторы?
У многих начинающих любителей электроники в процессе сборки самодельного устройства возникает вопрос: “Как правильно соединять конденсаторы?”
Казалось бы, зачем это надо, ведь если на принципиальной схеме указано, что в данном месте схемы должен быть установлен конденсатор на 47 микрофарад, значит, берём и ставим. Но, согласитесь, что в мастерской даже заядлого электронщика может не оказаться конденсатора с необходимым номиналом!
Похожая ситуация может возникнуть и при ремонте какого-либо прибора. Например, необходим электролитический конденсатор ёмкостью 1000 микрофарад, а под рукой лишь два-три на 470 микрофарад. Ставить 470 микрофарад, вместо положенных 1000? Нет, это допустимо не всегда. Так как же быть? Ехать на радиорынок за несколько десятков километров и покупать недостающую деталь?
Как выйти из сложившейся ситуации? Можно соединить несколько конденсаторов и в результате получить необходимую нам ёмкость. В электронике существует два способа соединения конденсаторов: параллельное и последовательное.
В реальности это выглядит так:
Параллельное соединение
Принципиальная схема параллельного соединения
Последовательное соединение
Принципиальная схема последовательного соединения
Также можно комбинировать параллельное и последовательное соединение. Но на практике вам вряд ли это пригодиться.
Как рассчитать общую ёмкость соединённых конденсаторов?
Помогут нам в этом несколько простых формул. Не сомневайтесь, если вы будете заниматься электроникой, то эти простые формулы рано или поздно вас выручат.
Общая ёмкость параллельно соединённых конденсаторов:
С1 – ёмкость первого;
С2 – ёмкость второго;
С3 – ёмкость третьего;
СN – ёмкость N-ого конденсатора;
Cобщ – суммарная ёмкость составного конденсатора.
Как видим, при параллельном соединении ёмкости нужно всего-навсего сложить!
Внимание! Все расчёты необходимо производить в одних единицах. Если выполняем расчёты в микрофарадах, то нужно указывать ёмкость C1, C2 в микрофарадах. Результат также получим в микрофарадах. Это правило стоит соблюдать, иначе ошибки не избежать!
Чтобы не допустить ошибку при переводе микрофарад в пикофарады, а нанофарад в микрофарады, необходимо знать сокращённую запись численных величин. Также в этом вам поможет таблица. В ней указаны приставки, используемые для краткой записи и множители, с помощью которых можно производить пересчёт. Подробнее об этом читайте здесь.
Ёмкость двух последовательно соединённых конденсаторов можно рассчитать по другой формуле. Она будет чуть сложнее:
Внимание! Данная формула справедлива только для двух конденсаторов! Если их больше, то потребуется другая формула. Она более запутанная, да и на деле не всегда пригождается .
Или то же самое, но более понятно:
Если вы проведёте несколько расчётов, то увидите, что при последовательном соединении результирующая ёмкость будет всегда меньше наименьшей, включённой в данную цепочку. Что это значить? А это значит, что если соединить последовательно конденсаторы ёмкостью 5, 100 и 35 пикофарад, то общая ёмкость будет меньше 5.
В том случае, если для последовательного соединения применены конденсаторы одинаковой ёмкости, эта громоздкая формула волшебным образом упрощается и принимает вид:
Здесь, вместо буквы M ставиться количество конденсаторов, а C1 – его ёмкость.
Стоит также запомнить простое правило:
При последовательном соединении двух конденсаторов с одинаковой ёмкостью результирующая ёмкость будет в два раза меньше ёмкости каждого из них.
Таким образом, если вы последовательно соедините два конденсатора, ёмкость каждого из которых 10 нанофарад, то в результате она составит 5 нанофарад.
Не будем пускать слов по ветру, а проверим конденсатор, замерив ёмкость, и на практике подтвердим правильность показанных здесь формул.
Возьмём два плёночных конденсатора. Один на 15 нанофарад (0,015 мкф.),а другой на 10 нанофарад (0,01 мкф.) Соединим их последовательно. Теперь возьмём мультиметр Victor VC9805+ и замерим суммарную ёмкость двух конденсаторов. Вот что мы получим (см. фото).
Замер ёмкости при последовательном соединении
Ёмкость составного конденсатора составила 6 нанофарад (0,006 мкф.)
А теперь проделаем то же самое, но для параллельного соединения. Проверим результат с помощью того же тестера (см. фото).
Измерение ёмкости при параллельном соединении
Как видим, при параллельном соединении ёмкость двух конденсаторов сложилась и составляет 25 нанофарад (0,025 мкф.).
Что ещё необходимо знать, чтобы правильно соединять конденсаторы?
Во-первых, не стоит забывать, что есть ещё один немаловажный параметр, как номинальное напряжение.
При последовательном соединении конденсаторов напряжение между ними распределяется обратно пропорционально их ёмкостям. Поэтому, есть смысл при последовательном соединении применять конденсаторы с номинальным напряжением равным тому, которое имеет конденсатор, взамен которого мы ставим составной.
Если же используются конденсаторы с одинаковой ёмкостью, то напряжение между ними разделится поровну.
Для электролитических конденсаторов.
При соединении электролитических конденсаторов (электролитов) строго соблюдайте полярность! При параллельном соединении всегда подключайте минусовой вывод одного конденсатора к минусовому выводу другого,а плюсовой вывод с плюсовым.
Параллельное соединение электролитов
Схема параллельного соединения
В последовательном соединении электролитов ситуация обратная. Необходимо подключать плюсовой вывод к минусовому. Получается что-то вроде последовательного соединения батареек.
Последовательное соединение электролитов
Схема последовательного соединения
Также не забывайте про номинальное напряжение. При параллельном соединении каждый из задействованных конденсаторов должен иметь то номинальное напряжение, как если бы мы ставили в схему один конденсатор. То есть если в схему нужно установить конденсатор с номинальным напряжением на 35 вольт и ёмкостью, например, 200 микрофарад, то взамен его можно параллельно соединить два конденсатора на 100 микрофарад и 35 вольт. Если хоть один из них будет иметь меньшее номинальное напряжение (например, 25 вольт), то он вскоре выйдет из строя.
Желательно, чтобы для составного конденсатора подбирались конденсаторы одного типа (плёночные, керамические, слюдяные, металлобумажные). Лучше всего будет, если они взяты из одной партии, так как в таком случае разброс параметров у них будет небольшой.
Конечно, возможно и смешанное (комбинированное) соединение, но в практике оно не применяется (я не видел ). Расчёт ёмкости при смешанном соединении обычно достаётся тем, кто решает задачи по физике или сдаёт экзамены
Тем же, кто не на шутку увлёкся электроникой непременно надо знать, как правильно соединять резисторы и рассчитывать их общее сопротивление!
Источник: go-radio.ru
Параллельное соединение конденсаторов
Параллельное соединение конденсаторов — это соединение при котором конденсаторы соединяются собой обоими контактами. В результате к одной точке может быть присоединено несколько конденсаторов. При параллельном соединении формируется один большой конденсатор с площадью обкладок, равной сумме площадей обкладок всех отдельных компонентов. Поскольку емкость конденсаторов прямо пропорциональна площади обкладок, общая емкость Собщ при параллельном соединении равняется сумме емкостей всех конденсаторов в цепи.
Напряжение при параллельном соединении
На все параллельно соединенные конденсаторы падает одинаковое напряжение. Так происходит, потому что существует всего лишь две точки, между которыми может быть разность потенциалов (напряжение). Другими словами, можно сказать что при параллельном соединении все конденсаторы подключены к одному источнику напряжения. Ток конденсатора во время переходного периода зависит от его емкости и изменения напряжения:
- ic — ток конденсатора
- C — Емкость конденсатора
- ΔVC/Δt – Скорость изменения напряжения
Будет интересно➡ Чем отличается пусковой конденсатор от рабочего?
При параллельном соединении через каждый конденсатор потечет одельный ток, в зависимости от емкости конденсатора:
Ток при последовательном соединении
Ток (iC), заряжающий последовательную цепь конденсаторов, будет одинаковым для всех конденсаторов, поскольку у него есть только один возможный путь прохождения:
Вследствие того что через все последовательно соединенные конденсаторы течет одинаковый ток, количество накопленого электрического заряда для каждого конденсатора будет одинаковым, независимо от его емкости. Так происходит, потому что электрический заряд, накапливаемый на обкладке любого конденсатора, должен прийти с обкладки примыкающего конденсатора.
Таким образом, последовательно соединенные конденсаторы имеют одинаковый электрический заряд:
Посмотрим на последовательную цепь из трех конденсаторов на рисунке выше. Правая обкладка первого конденсатора С1 соединяется с левой второго конденсатора С2, у которого правая обкладка соединяется с левой третьего конденсатора С3. Это означает, что в режиме постоянного тока конденсатор С2 электрически изолирован от общей цепи.
Читайте также: Как соединить розетки между собой
В итогое эффективная площадь обкладок уменьшается до площади обкладок самого маленького конденсатора. Это объясняется тем, что как только обкладки наименшей площади заполнятся электрическим зарядом, данный конденсатор перестанет пропускать ток. В результате ток прекратиться во всей цепи, и процесс зарядки остальных конденсаторов также прекратится.
При последовательном соединении общее расстояние между обкладками увеличивается до суммы расстояний между обкладками всех конденсаторов.
Таким образом, последовательная цепь формирует один большой конденсатор с площадью обкладок элемента с наименьшей емкостью, и расстоянием между обкладками, равному сумме всех расстояний в цепи.
Площадь и расстояние между обкладками при последовательном соединении
Последовательное соединение конденсаторов
Если же соединение конденсаторов в батарею производится в виде цепочки и к точкам включения в цепь непосредственно присоединены пластины только первого и последнего конденсаторов, то такое соединение конденсаторов называется последовательным. При последовательном соединении все конденсаторы заряжаются одинаковым количеством электричества, так как непосредственно от источника тока заряжаются только крайние пластины, а остальные пластины заряжаются через влияние. При этом заряд пластины будет равен по величине и противоположен по знаку заряду пластины 1, заряд пластины 3 будет равен по величине и противоположен по знаку заряду пластины 2 и т. д.
Напряжения на различных конденсаторах будут, вообще говоря, различными, так как для заряда одним и тем же количеством электричества конденсаторов различной емкости всегда требуются различные напряжения.
Типы соединений конденсаторов.
Чем меньше емкость конденсатора, тем большее напряжение необходимо для того, чтобы зарядить этот конденсатор требуемым количеством электричества, и наоборот.
Таким образом, при заряде группы конденсаторов, соединенных последовательно, на конденсаторах малой емкости напряжения будут больше, а на конденсаторах большой емкости — меньше.
Аналогично предыдущему случаю можно рассматривать всю группу конденсаторов, соединенных последовательно, как один эквивалентный конденсатор, между пластинами которого существует напряжение, равное сумме напряжений на всех конденсаторах группы, а заряд которого равен заряду любого из конденсаторов группы. Возьмем самый маленький конденсатор в группе. На нем должно быть самое большое напряжение. Но напряжение на этом конденсаторе составляет только часть общего напряжения, существующего на всей группе конденсаторов. Напряжение на всей группе больше напряжения на конденсаторе, имеющем самую малую емкость. А отсюда непосредственно следует, что общая емкость группы конденсаторов, соединенных последовательно, меньше емкости самого малого конденсатора в группе.
Последовательное соединение конденсаторов – это соединение двух или более конденсаторов в форме цепи, в которой каждый отдельный конденсатор соединяется с другим отдельным конденсатором только в одной точке. Ток (iC), заряжающий последовательную цепь конденсаторов, будет одинаковым для всех конденсаторов, поскольку у него есть только один возможный путь прохождения.
Вследствие того что через все последовательно соединенные конденсаторы течет одинаковый ток, количество накопленого электрического заряда для каждого конденсатора будет одинаковым, независимо от его емкости. Так происходит, потому что электрический заряд, накапливаемый на обкладке любого конденсатора, должен прийти с обкладки примыкающего конденсатора. Таким образом, последовательно соединенные конденсаторы имеют одинаковый электрический заряд.
Стоит почитать: все об электолитических конденсаторах.
Правая обкладка первого конденсатора С1 соединяется с левой второго конденсатора С2, у которого правая обкладка соединяется с левой третьего конденсатора С3. Это означает, что в режиме постоянного тока конденсатор С2 электрически изолирован от общей цепи. В итогое эффективная площадь обкладок уменьшается до площади обкладок самого маленького конденсатора. Это объясняется тем, что как только обкладки наименшей площади заполнятся электрическим зарядом, данный конденсатор перестанет пропускать ток. В результате ток прекратиться во всей цепи, и процесс зарядки остальных конденсаторов также прекратится. При последовательном соединении общее расстояние между обкладками увеличивается до суммы расстояний между обкладками всех конденсаторов.
Будет интересно➡ Сколько стоят керамические конденсаторы?
Таким образом, последовательная цепь формирует один большой конденсатор с площадью обкладок элемента с наименьшей емкостью, и расстоянием между обкладками, равному сумме всех расстояний в цепи. На каждый отдельный конденсатор в последовательной цепи падает разное напряжение. Поскольку емкость обратно пропрциональна напряжению (С = Q/V), то чем меньше емкость конденсатора, тем большее напряжение на него упадет. Применим закон Кирхгофа для напряжения в последовательной цепи из трех конденсаторов.
Емкость конденсатора прямо пропорциональна его заряду и обратно пропорциональна его напряжению — C = Q/V. Как уже упоминалось выше, последовательно соединенные конденсаторы имеют одинаковый электрический заряд — Qобщ = Q1 = Q2 = Q3. Из данного уравнения можно легко вывести формулу общей емкости для любого частного случая последовательного соединения.
Интересно почитать: принцип действия и основные характеристики варисторов.
Если в цепи есть и последовательное и параллельное соединение, то такую цепь называют смешанной или последовательно-параллельной. Тем не менее, смешанное соединение может иметь как последовательный, так и параллельный характер.
Типы соединений конденсаторов.
Падение напряжения и общая емкость при последовательном соединении
На каждый отдельный конденсатор в последовательной цепи падает разное напряжение. Поскольку емкость обратно пропрциональна напряжению (С = Q/V), то чем меньше емкость конденсатора, тем большее напряжение на него упадет.
Применим закон Кирхгофа для напряжения в последовательной цепи из трех конденсаторов:
Падение напряжения при последовательном соединении
Емкость конденсатора прямо пропорциональна его заряду и обратно пропорциональна его напряжению — C = Q/V. Как уже упоминалось выше, последовательно соединенные конденсаторы имеют одинаковый электрический заряд — Qобщ = Q1 = Q2 = Q3.
Разделив все выражение на Qобщ мы получим уравнение для общей емкости при последовательном соединении:
Из данного уравнения можно легко вывести формулу общей емкости для любого частного случая последовательного соединения.
Например, общая емкость для трех конденсаторов:
Общая емкость для двух конденсаторов:
Как рассчитать емкость одного устройства
Этот показатель является одним из главных характеристик любого прибора. От этого показателя зависит сфера его использования, правила эксплуатации и предназначение. Указывается ёмкость в фарадах.
В России она указывается символом «Ф», в Европе — «F». На самих электронных устройствах можно увидеть такую символьную кодировку, pF, nF или uF. Это означает, что компонент имеет ёмкость 10-11,10-9 и 10-7 фарад.
Показатель можно рассчитать при помощь замеров мультиметром. В конструкции конденсатора имеются металлические пластины. Их поперечные параметры должны быть чуть больше, чем промежуток между ними.
В центр такой пластины будет подключаться оболочка диэлектрика. В процессе работы устройства на выводы оболочки подаётся заряд. В итоге электроны начинают перемещаться, но не могут выходить за диэлектрик, и поэтому в пластинах собирается заряд.
Умение прибора накапливать электрическую энергию и будет его ёмкостью. Если провести аналогию с банкой для жидкости, то емкость — это будет объем.
Чтобы правильно рассчитать ёмкость, нужно воспользоваться формулой:
- А — площадь самой маленькой пластины;
- d — промежуток между пластинами;
- ε — общая проницаемость диэлектрика.
В заключении необходимо отметить, что рассчитать емкость самостоятельно достаточно легко. В интернете много сервисов, которые помогут с расчетами. Эту величину необходимо знать для того, чтобы правильно присоединить конденсатор в цепь.
Источник: rusenergetics.ru
Способы соединения конденсаторов
Составление батарей конденсаторов позволяет изменить суммарную ёмкость или рабочее напряжение. Для этого могут применяться такие способы соединения:
- последовательное;
- параллельное;
- смешанное.
Последовательное соединение
Последовательное подключение конденсаторов показано на рис. 1, в. Применяют такое соединение в основном для увеличения рабочего напряжения. Дело в том, что диэлектрики каждого из элементов расположены друг за другом, поэтому при таком соединении напряжения складываются.
Суммарная ёмкость последовательно соединённых элементов можно рассчитать по формуле, которая для трёх компонентов будет иметь вид, показанный на рис. 1, е.
После преобразования в более привычную для нас форму, формула примет вид рис. 1, ж.
Если, соединённые последовательно, компоненты имеют одинаковые ёмкости, то расчёт значительно упрощается. В этом случае суммарную величину можно определить, разделив номинал одного элемента на их количество. Например, если требуется определить, какова ёмкость при последовательном соединении двух конденсаторов по 100 мкФ, то эту величину можно рассчитать, разделив 100 мкФ на два, то есть суммарная ёмкость равна 50 мкФ.
Максимально упростить расчёты последовательно соединённых компонентов, позволяет использование онлайн-калькуляторов, которые без проблем можно найти в сети.
Параллельное подключение
Параллельное подключение конденсаторов показано на рис. 1, г. При таком соединении рабочее напряжение не изменяется, а ёмкости складываются. Поэтому для получения батарей большой ёмкости, используют параллельное соединение конденсаторов. Калькулятор для расчёта суммарной ёмкости не понадобится, так как формула имеет простейший вид:
С сум = С 1 + С 2 + С 3.
Собирая батарею для запуска трёхфазных асинхронных электродвигателей, часто применяют параллельное соединение электролитических конденсаторов. Обусловлено это большой ёмкостью этого типа элементов и небольшим временем запуска электродвигателя. Такой режим работы электролитических компонентов допустим, но следует выбирать те элементы, у которых номинальное напряжение минимум в два раза превышает напряжение сети.
Где и для чего используются
Как уже говорили, сложно найти схему без конденсаторов. Их применяют для решения самых разных задач:
- Для сглаживания скачков сетевого напряжения. В таком случае их ставят на входе устройств, перед микросхемами, которые требовательны к параметрам питания.
- Для стабилизации выходного напряжения блоков питания. В таком случае надо искать их перед выходом.
Часто можно увидеть электролитические цилиндрические конденсаторы
- Датчик прикосновения (тач-пады). В таких устройствах оной из «пластин» конденсаторов является человек. Вернее, его палец. Наше тело обладает определённой проводимостью. Это и используется в датчиках прикосновения.
- Для задания необходимого ритма работы. Время заряда конденсаторов разной ёмкости отличается. При этом цикл заряд/разряд конденсатора остаётся величиной постоянной. Это и используется в цепях, где надо задавать определённый ритм работы.
- Ячейки памяти. Память компьютеров, телефонов и других устройств — это огромное количество маленьких конденсаторов. Если он заряжен — это единица, разряжен — ноль.
- Есть стартовые конденсаторы, которые помогают «разогнать» двигатель. Они накапливают заряд, потом резко его отдают, создавая требуемый «толчок» для разгона мотора.
- В фотовспышках. Принцип тот же. Сначала накапливается заряд, затем выдаётся, но преобразуется в свет.
Конденсаторы встречаются часто и область их применения широка. Но надо знать как правильно их подключить.
Общая емкость смешанного соединения конденсаторов
Чтобы посчитать общую емкость смешанного соединения конденсаторов, следуют такому же алгоритму, как и при расчете общего сопротивления смешанного соединения резисторов.
- Цепь разбивают на участки с только пареллельным или только последовательным соединением
- Вычисляют общую емкость для каждого отдельного участка.
- Вычисляют общую емкость для всей цепи смешанного соединения.
Вполне справедливым может оказаться вопрос, для чего надо соединять конденсаторы последовательно, если общая емкость будет меньше? Скорее всего, первым что приходит в голову — это чтобы получить новый эквивалентный конденсатор с меньшей емкостью. Но в производстве микросхем вряд ли будут делать подобное, поскольку, во -первых, обычно нужно экономить место на печатной плате, а во-вторых, нет смысла тратить деньги на два компонента или больше, если можно купить один с требуемой емкостью.
Но если в параллельном или последовательном соединении конденсаторов еще есть хоть какая-то логика, то кому вообще нужно смешанное? Дело в том, что емкостью, то есть способностью накапливать электрический заряд, обладает любое тело в природе, даже человеческое.
Если мы говорим о электрической цепи, то все ее элементы на практике обладают емкостью, и их можно представить, как конденсаторы. Часто такую емкость еще называют паразитической, потому как она создает разного рода помехи.
Например, у нас есть какая-то электронная цепь с множеством различных компонентов, которая принимает сигнал, обрабатывает его определенным образом и выдает на выход результат. Известно, что время задержки сигнала, в основном, зависит от паразитической емкости электронных компонентов схемы. Поскольку должно пройти время зарядки паразитической емкости, прежде чем она начнет пропускать сигнал. Если мы хотим узнать время задержки, нужно посчитать общую емкость всех компонентов, конвертировав их в цепь из конденсаторов.
Материал в тему: описание и область применения подстроечного резистора.
Что он из себя представляет и как работает
В самом простейшем случае конденсатор состоит из двух токопроводящих пластин (обкладок), разделённых слоем диэлектрика.
Между обкладками находится слой диэлектрика — материала плохо проводящего электрический ток
На пластины подаётся постоянный или переменный ток. Вначале, пока энергия накапливается, потребление энергии конденсатором высокое. По мере «наполнения» ёмкости оно снижается. Когда заряд набран полностью, токопотребления вообще нет, источник питания как бы отключается. В это время конденсатор сам начинает отдавать накопленный заряд. То есть, он на время становится своеобразным источником питания. Поэтому его и сравнивают с аккумулятором.
ССЫЛКИ ПО ТЕМЕ:
Типы конденсаторов
Понятие о приборе
Говоря простым языком, конденсаторами называют радиоэлектронные приборы, которые используются для накопления электроэнергии, впоследствии передавая ее на цепь. Эти устройства достаточно часто применяют в разных электрических схемах.
Приборы могут очень быстро накапливать энергию и так же стремительно ее передавать. Эти устройства функционируют циклично. Показатель накопленной энергии и циклы определяется техническими параметрами изделия, они зависят от самой модели устройства. Основные технические параметры указаны в маркировке конденсатора. Принцип действия устройства очень похож на индуктивную катушку.
Ниже можно прочесть про последовательное и параллельное соединение конденсаторов с формулами и вычислениями.
Какая общая емкость при подключении устройств
Формула для общей емкости выглядит следующим образом:
C = Q / U = (Q1 + Q2 + Q3) / U = C1 + C2 + C3;
т. е. при последовательном подключении конденсаторов суммарная емкость равняется сумме показателей каждого элемента.
Почему электролитические конденсаторы выходят из строя и что делать
Зачастую, чтобы отремонтировать вышедшую из строя электронную технику, достаточно найти и заменить вздувшиеся конденсаторы. Дело в том, что срок жизни их небольшой — 1000-2000 тысячи рабочих часов. Потом он обычно выходит из строя и требуется его замена. И это при нормальном напряжении не выше номинального. Так происходит потому, что диэлектрик в конденсаторах, чаще всего, жидкий. Жидкость понемногу испаряется, меняются параметры и, рано или поздно, конденсатор вздувается.
Электролитические конденсаторы имеют специальные насечки на верхушке корпуса, чтобы при выходе из строя избежать взрыва
Высыхает электролит не только во время работы. Даже просто «от времени». Это конструктивная особенность электролитических конденсаторов. Поэтому не стоит ставить выпаянные из старых схем конденсаторы или те, которые несколько лет (или десятков лет) хранятся в мастерской. Лучше купить «свежий», но проверьте дату производства.
Можно ли продлить срок эксплуатации конденсаторов? Можно. Надо улучшить теплоотвод. Чем меньше греется электролит, тем медленнее высыхает. Поэтому не стоит ставить аппаратуру вблизи отопительных приборов.
Для улучшения отвода тепла ставят радиаторы
Второе — надо следить за тем, чтобы хорошо работали кулера. Третье — если рядом стоят детали, которые активно греются во время работы, надо конденсаторы каким-то образом от температуры защитить.
Как подобрать замену
Если часто приходится менять один и тот же конденсатор, его лучше заменить на более «мощный» — той же ёмкости, но на большее напряжение. Например, вместо конденсатора на 25 вольт, поставить конденсатор на 35 вольт. Только надо иметь в виду, что более мощные конденсаторы имеют большие размеры. Не всякая плата позволяет сделать такую замену.
Конденсатор той же ёмкости, но рассчитанный на большее напряжение, имеет больший размер
Можно поставить параллельно несколько конденсаторов с тем же напряжением, подобрав номиналы так, чтобы получить требуемую ёмкость. Что это даст? Лучшую переносимость пульсаций тока, меньший нагрев и, как следствие, более продолжительный срок службы.
Как подключать конденсаторы
В электротехнике есть два основных вида соединения деталей — параллельное и последовательное. Конденсаторы также можно подключать по любому из указанных способов. Есть ещё особая — мостовая схема. Она имеет собственную область использования.
В схеме может быть последовательное и параллельное соединение конденсаторов
Параллельное подключение конденсаторов
При параллельном соединении все конденсаторы объединены двумя узлами. Чтобы параллельно подключить конденсаторы, скручиваем попарно их ножки, обжимаем пассатижами, потом пропаиваем. У некоторых конденсаторов большие корпуса (банки), а выводы маленькие. В таком случае используем провода (как на рисунке ниже).
Так физически выглядит параллельное подключение конденсаторов
Если конденсаторы электролитические, следите за полярностью. На них должны стоять «+» или «-«. При их параллельном подключении соединяем одноимённые выводы — плюс к плюсу, минус — к минусу.
Расчёт суммарной ёмкости
При параллельном подключении конденсаторов их номинальная ёмкость складывается. Просто суммируете номиналы всех подключённых элементов, сколько бы их ни было. Два, три, пять, тридцать. Просто складываем. Но следите, чтобы размерность совпадала. Например, складывать будем в микрофарадах. Значит, все значения переводим в микрофарады и только после этого суммируем.
Расчёт ёмкости при параллельном подключении конденсаторов
Когда на практике применяют параллельное соединение конденсаторов? Например, тогда, когда надо заменить «пересохший» или сгоревший, а нужного номинала нет и бежать в магазин некогда или нет возможности. В таком случае подбираем из имеющихся в наличии. В сумме они должны дать требуемое значение. Все их проверяем на работоспособность и соединяем по приведенному выше принципу.
Пример расчёта
Например, включили параллельно два конденсатора — 8 мкФ и 12 мкФ. Следуя формуле, их номиналы просто складываем. Получаем 8 мкФ + 12 мкФ = 20 мкФ. Это и будет суммарная ёмкость в данном случае.
Пример расчёта конденсаторов при параллельном подключении
Последовательное соединение
Последовательным называется соединение, когда выход одного элемента соединяется со входом другого. Сравнить можно с вагонами или цепочкой из лампочек. По такому же принципу последовательно соединяют и конденсаторы.
Вот что значит последовательно соединить конденсаторы
При подключении полярных электролитических «кондеров» надо следить за соблюдением полярности. Плюс первого конденсатора подаете на минус второго и так далее. Выстраиваете цепочку.
Существуют неполярные (биполярные) электролитические конденсаторы. При их соединении нет необходимости соблюдать полярность.
Как определить ёмкость последовательно соединенных конденсаторов
При последовательном соединении конденсаторов суммарная ёмкость элементов будет меньше самого маленького номинала в цепочке. То есть, ёмкость последовательно соединённых конденсаторов уменьшается. Это также может пригодиться при ремонте техники — замена конденсатора требуется часто.
Последовательно соединённые конденсаторы
Использовать формулу расчёта приведённую выше не очень удобно, поэтому её обычно используют в преобразованном виде:
Формула расчёта ёмкости при последовательном соединении
Это формула для двух элементов. При увеличении их количества она становится значительно сложнее. Хотя, редко можно встретить больше двух последовательных конденсаторов.
Пример расчёта
Какая суммарная ёмкость будет если конденсаторы на 12 мкФ и 8 мкФ соединить последовательно? Считаем: 12*8 / (12+8) = 96 / 20 = 4,8 мкФ. То есть, такая цепочка соответствует номиналу 4,8 мкФ.
Пример расчета ёмкости при последовательном подключении конденсаторов
Как видите, значение меньше чем самый маленький номинал в последовательности. А если подключить таким образом два одинаковых конденсатора, то результат будет вполовину меньше номинала. Например, рассчитаем для двух ёмкостей по 12 мкФ. Получим: 12*12 / (12 + 12) = 144 / 24 = 6 мкФ. Проверим для 8 мкФ. Считаем: 8*8 / (8+8) = 64 / 16 = 4 мкФ. Закономерность подтвердилась. Это правило можно использовать при подборе номинала.
- https://ElectroInfo.net/kondensatory/chem-otlichajutsja-parallelnoe-i-posledovatelnoe-soedinenie-kondensatorov.html
- https://www.translatorscafe.com/unit-converter/ru-RU/calculator/series-capacitance/
- https://eclectic-style.ru/soedineniya/emkost-pri-posledovatelnom-soedinenii.html
- https://kupi-elektriku.ru/osnovy-elektrotexniki/posledovatel-noe-i-parallel-noe-soedineniya-kondensatorov-primenenie-formuly-rascheta-emkosti-i-napryazheniya/
- https://elektroznatok.ru/info/elektronika/soedinenie-kondensatorov