Трехфазный диодный мост своими руками, как подключить автомобильный диодный мост к трансформатору

Содержание
  1. Диодный мост: назначение, схема, реализация
  2. Определение
  3. Что такое диодный мост и зачем нужен
  4. Самостоятельное изготовление моста
  5. Способы проверки
  6. Преимущества и недостатки
  7. Моделирование системы
  8. Резистивная нагрузка
  9. Емкостная нагрузка
  10. Реализация ИС
  11. Основные характеристики
  12. Как маркируется диод Шоттки и обозначается на схемах
  13. Сообщества › Самодельный диодный мост генератора
  14. Особенности и принцип работы диода Шоттки
  15. Отличие от других полупроводников
  16. Схема диодного моста
  17. Однофазный выпрямитель
  18. Трёхфазный выпрямитель
  19. Как сделать диодный мост своими руками
  20. Что нужно для работы
  21. Проверка на работоспособность
  22. Принцип действия полупроводникового диода
  23. Схема диодного моста
  24. Состав выпрямительного модуля
  25. Металл-полупроводник: принцип работы перехода
  26. Выпрямитель на основе диодного моста
  27. Диодный мост схема, принцип работы
  28. Проявление неисправностей диодов Шоттки
  29. Выбор типа сборки
  30. Условное обозначение и характеристики
  31. Область применения и назначение
  32. Автомобильный диодный мост на зарядное устройство
  33. Мощные диоды Шоттки 2ДШ2942 АЕЯР.432120.555ТУ
  34. Область применения
  35. Принцип работы диодного моста

Диодный мост: назначение, схема, реализация

Подавляющее большинство электронной аппаратуры работает на постоянном токе. А источником напряжения может быть как гальванический элемент, так и городская сеть переменного ток 220 В. Вот и приходится переменный ток преобразовывать в постоянный, то есть – «выпрямлять». Для этой цели служит устройство под названием выпрямитель. Это может быть готовый промышленный компонент, а может быть электронная схема, собранная из отдельных, более простых, элементов. Сегодня разберём, что же такое диодный мост, зачем он нужен и как работает.

Определение

Диодный мост – это схемотехническое решение, предназначенное для выпрямления переменного тока. Другое название – двухполупериодный выпрямитель. Строится из полупроводниковых выпрямительных диодов или их разновидности – диодов Шоттки.

Мостовая схема соединения предполагает наличие нескольких (для однофазной цепи – четырёх) полупроводниковых диодов, к которым подключается нагрузка.

Он может состоять из дискретных элементов, распаянных на плате, но в 21 веке чаще встречаются соединенные диоды в отдельном корпусе. Внешне это выглядит, как и любой другой электронный компонент – из корпуса определенного типоразмера выведены ножки для подключения к дорожкам печатной платы.

Что такое диодный мост — простое объяснение

Стоит отметить, что несколько совмещенных в одном корпусе вентилей, которые соединены не по мостовой схеме, называют диодными сборками.

В зависимости от сферы применения и схемы подключения диодные мосты бывают:

  • однофазные;
  • трёхфазные.

Обозначение на схеме может быть выполнено в двух вариантах, какое использовать УГО на чертеже зависит от того, собирается мост из отдельных элементов или используется готовый.

УГО на чертеже

Что такое диодный мост и зачем нужен

Переменный ток в бытовой электросети по синусоидальному закону меняет свою полярность 50 раз в секунду. Диодный мост, собранный из четырёх диодов, 25 раз в секунду пропускает одну положительную полуволну. То есть, превращает ток переменного знака амплитудой, имеющей колебательный характер, в ток одного знака, но с удвоенной частотой колебаний амплитуды. Если потребителя это не устраивает, то после выпрямителя ставится сглаживающий фильтр. Ниже представлена принципиальная электрическая схема диодного моста-выпрямителя.

Диодный мост можно собрать из отдельных конструктивно законченных диодов, но можно в промышленных условиях сразу изготовить из кристаллов в виде цельного изделия, пригодного к дальнейшей установке в электронную схему. Такая диодная сборка имеет технологические преимущества над предыдущим вариантом. Она компактней, монтаж моста надёжней, стоимость существенно ниже, чем у четырёх диодов.

Диодный мост, собранный из четырёх диодов

Диодный мост в виде одного изделия

Самостоятельное изготовление моста

Перед тем, как спаять диодный мостик, обязательно проверьте исправность каждого из входящих в его состав диода. Также обращаем внимание на то, что он может быть собран из отдельных (дискретных) элементов или взят в виде цельной корпусной сборки, имеющей четыре выводных контакта.

У каждого из этих вариантов исполнения мостика имеются свои плюсы и минусы.

Важно! В случае выхода из строя одного диода в составе монолитной сборки менять придется всю ее целиком (несмотря на то, что три оставшихся элемента могут быть исправными).

Зато такой модуль очень удобен при пайке выпрямительной схемы, когда нужно подключить диодный мост к источнику переменного напряжения с одной стороны и к нагрузке – с другой.

В ситуации, когда собираем диодный мост своими руками из дискретных элементов, всегда имеется возможность заменить каждый из них независимо от остальных. Но при данном подходе усложняется сам процесс изготовления, для чего придется паять все четыре его составных элемента.

По завершении самостоятельной сборки выпрямительного изделия останется лишь подсоединить диодный мост к трансформатору или к иному источнику, от которого поступает переменное напряжение.

В заключительной части обзора, посвященного тому, как работает схема диодного моста, обратим внимание на то, что при его самостоятельной сборке следует изучить параметры входящих в его состав элементов. Знание этих данных позволит правильно рассчитать допустимые токи нагрузки, а также быть уверенным в том, что диодная сборка не выйдет из строя.

Способы проверки

Для проверки диодного моста лучше всего подходит мультиметр в режиме проверки диодов.

Для этого нужно прозвонить на короткое замыкание входную, затем выходную (диодный мост должен быть выпаян).

Не выпаивая прямо на плате, вы можете измерить падение напряжения на переходах диодов. Для этого нужно определить цоколевку моста, обычно она указывается прямо на корпусе, что мы и рассматривали выше.

На экране мультиметра в прямом смещении должно отображаться цифры в пределах 500-800 мВ, а в обратном – выше 1500 и до бесконечности (зависит от конкретного компонента и измерительного прибора). Тоb же самое можно сделать в режиме Омметра, как показано на рисунке ниже.

Более подробно этот процесс описан в статье «как проверить диодный мост», где кроме методики проверки мы рассказали и о признаках неисправности. Также ознакомьтесь с видео о том, как проверить однофазный выпрямитель и диодный мост автомобильного генератора:

На этом мы и заканчиваем наше подробное объяснение. Надеемся, теперь вам стало понятно, для чего нужен диодный мост и что он делает в электрической цепи. Если возникли вопросы, задавайте их в комментариях под статьей!

Преимущества и недостатки

Кроме диодного моста существуют и другие способы преобразования переменного в постоянный ток. В сравнении с однополупериодным, двухполупериодное выпрямление обладает рядом преимуществ:

  • И отрицательная, и положительная полуволна синусоиды преобразуются в выходное напряжение, поэтому вся мощность трансформатора используется в наиболее оптимальной степени.
  • За счет большей частоты пульсации получаемое от диодного выпрямителя напряжение куда проще сглаживать при помощи фильтров.
  • Использование электроэнергии под нагрузкой уменьшает потери мощности на перемагничивание сердечника, возникающее из-за процессов взаимоиндукции в обмотках питающего трансформатора.
  • Гармоничное перераспределение кривой электротока и напряжения на выходе – за счет передачи каждого полупериода сразу двумя диодами в мосте, выходной параметр получается куда более равномерным.

К недостаткам диодного моста следует отнести и большее падение напряжения, в сравнении с однополупериодной схемой или выпрямителем с отводом из средней точки. Это обусловлено тем, что ток протекает сразу черед два полупроводниковых элемента и встречает омическое сопротивление от каждого из них. Такой недостаток может оказывать существенное влияние в слаботочных цепях, где доли ампера могут решать значение сигналов, режимы работы агрегатов и т.д. В качестве решения могут применяться диодные мосты с диодами Шотки, у которых падение прямого напряжения относительно ниже.

Еще одним недостатком является сложность определения перегоревшего звена, так как при выходе со строя хотя бы одного диода вся схема будет продолжать работать. Понять, что один из полупроводниковых элементов выпал из цепи можно лишь с помощью измерений, далеко не всегда прибор или схема отреагируют при сбое видимой неисправностью.

Моделирование системы

Система реализована в симуляторе Microcap Simulator, подготовлена специализированная модель для ИС IR1167 (см. рис. 4). Особое внимание уделено возможности работы модели IR1167 с плавающим заземлением, поскольку опорным сигналом двух верхних устройств схемы должно быть переменное напряжение сети питания, и использование ими потенциала заземления невозможно. Параметры моделирования следующие:

  • Vin = GOVpeak
  • F = 50 Гц
  • Rload = от 5 до 40 Ом
  • Gout = от 0 до 1000 мкФ — ESR = 300 МОм

Для проверки функциональности системы и эффективности замысла необходимо выполнить несколько попыток моделирования до начала реальной аппаратной реализации.

Резистивная нагрузка

Первая серия моделей создана с целью сравнения функционирования активного моста с функционированием стандартного моста на основе диодов Шоттки, на последующих рисунках будут показаны полученные результаты. Мост на основе диодов Шоттки построен из четырех устройств MBR10100 в корпусе TO220AB, для построения активного моста использован полевой транзистор DirectFet IRF6644 с поддержкой напряжения 100 В. На рис. 5 показан вариант с максимальной нагрузкой (5 Ом), с максимальным пиковым выходным током 12 A и средней выходной мощностью около 360 Вт.

Рис. 5. Rload = 5 Ом, Cout = 0
Верхний: Vin, Vout и Vo, Средний: Vg1, Vg2, Vg3 и Vg4, Нижний: Vo-Vo (диоды Шоттки), Pdiss (активный мост), Pdiss (диоды Шоттки), Pdiss (активный мост) — Pdiss (диоды Шоттки) 

В этом случае мы можем видеть синусоидальное выходное напряжение (зеленая кривая) и ток (светло-голубая кривая), а в центре отображаются прямоугольные импульсы напряжения затворов полевых транзисторов низкого плеча. Также заслуживает внимания синусоидальная форма плавающего напряжения затвора МОП-структуры, изображенной на среднем графике, поскольку она должна соответствовать входной синусоиде с положительным сдвигом, равным 10,7 В (Vgate).

На третьем графике показано увеличение мощности при применении активного решения: синусоидой черного цвета показана мощность, рассеиваемая четырьмя диодами, которая достигает пика 18 Вт, тогда как тот же пик активного моста едва достигает значения 2,25 Вт, разность средних значений, показанная голубой кривой, составляет примерно 10 Вт. На малых нагрузках ситуация может отличаться, а более сложная цепь может не дать достаточного преимущества по сравнению с простым мостом, построенным из четырех диодов. Однако на рис. 6 приведены интересные результаты.

Рис. 6. Rload = 40 Ом, Cout = 0
Верхний: Vin, Vout и Vo, Средний: Vg1, Vg2, Vg3 и Vg4, Нижний: Vo-Vo (диоды Шоттки), Pdiss (активный мост), Pdiss (диоды Шоттки), Pdiss (активный мост) — Pdiss (диоды Шоттки)

В последнем случае выходная мощность составляет всего 45 Вт, мы также получили большую разность с точки зрения пиковой рассеиваемой мощности, которая составляет 0,036 Вт против 1,6 Вт, а средняя разность значений потери мощности — около 1 Вт.

Емкостная нагрузка

Емкостная нагрузка является более реальной для применения в силовом AC-DC-преобразователе. На рис. 7 и 8 показаны результаты моделирования с сопротивлением, равным соответственно 5…40 Ом, а суммарная выходная емкость равна 1000 мкФ.

Рис. 7. Rload = 5 Ом, Cout = 1000
Верхний: Vin, Vout и Vo, Средний: Vg1, Vg2, Vg3 и Vg4, Нижний: Vo-Vo (диоды Шоттки), Pdiss (активный мост), Pdiss (диоды Шоттки), Pdiss (активный мост) — Pdiss(диоды Шоттки)

Рис. 8. Rload = 40 Ом, Cout = 1000
Верхний: Vin, Vout и Vo, Средний: Vg1, Vg2, Vg3 и Vg4, Нижний: Vo-Vo (диоды Шоттки), Pdiss (активный мост), Pdiss (диоды Шоттки), Pdiss (активный мост) — Pdiss (диоды Шоттки)

Среднее уменьшение потерь мощности изменяется с 20% при большой нагрузке (5 Ом) до примерно 5% при малой нагрузке (40 Ом). Также стоит обратить внимание на то, что размер корпуса диодного моста, построенного из четырех диодов MBR10H100, занимает примерно 580 мм2 площади против только 120 мм2 в случае использования четырех транзисторных схем IRF6644. Таким образом, экономия места составляет приблизительно 80%.

Реализация ИС

В предлагаемом на рис. 9 контроллере на основе активного моста, благодаря технологии IR GENS, внутренние каскады, запускающие два полевых транзистора высокого плеча Q3 и Q4, могут быть реализованы двумя раздельными плавающими эпитаксиальными карманами внутри одной ИС.

Рис. 9. Предложение нового контроллера активного моста 

Для предохранения двух внешних компонентов в схему также можно интегрировать два ограничивающих диода. Дополнительную RC-цепь, которая предназначена для защиты от паразитных переключений, можно заменить отдельными блоками регулировки времени выключения для каждой секции драйвера, чтобы оптимизировать время задержки разных полевых транзисторов с разными требованиями нагрузки. В дальнейшем лучшие полевые транзисторы IR, ограничивающие конденсаторы и ИС управления активным мостом можно интегрировать в одном корпусе, получив повышенную удельную плотность и обеспечив реализацию простого устройства. Такая схема становится высокоэффективной заменой существующим стандартным входным выпрямительным диодным мостам.

Основные характеристики

И отдельные диоды, и промышленные диодные сборки описываются стандартным набором технических характеристик:

Вариант изображения моста на принципиальной электрической схеме

Сборка «Диодный мост» на печатной плате

Как маркируется диод Шоттки и обозначается на схемах

Зачастую диод Шоттки на схеме обозначается как обычный диод, а дополнительная информация о типе компонента указывается в спецификации.

Диод Шоттки на схеме

Как правило, маркировка диодов Шоттки представляет собой набор символов, нанесенных на корпус изделия согласно международным стандартам. В зависимости от страны производителя маркировки могут различаться. В любом случае расшифровать код можно при помощи радиотехнических справочников.

Маркировка диодов Шоттки

В случае необходимости можно заменить стандартный диод можно аналогичным устройством с барьером – главное, чтобы совпадали параметры тока и напряжения. Но монтировать классическое изделие вместо барьерного аналога категорически не рекомендуется, поскольку из-за перегрева оно быстро выйдет из строя. Опытные радиотехники могут подобрать элемент с запасом по мощности, проанализировав всю схему.

Сообщества › Самодельный диодный мост генератора

Сразу оговорюсь, это не совсем про ВАЗы. Но, надеюсь, будет любопытно достопочтенной публике

1. «Первый», блин, в коме. Как я писал ранее, «в прошлой жизни» на нуль-одиннадцатой, мною был установлен генератор на 95А от Ауди-100 «селёдки» с эл-нагнетателем (ни разу живьём его повидать так и не удалось, было бы любопытно). Видимо, эти машины комплектовались более мощным генератором юзал я этого Геннадия, наслаждался жизнью, и бед не знал. Пока однажды, во время экстремального лазания по г@внам не рас@#ячил его ж@пу об острый камень. Пострадал щёточный узел, и выпрямитель. Жалко было до соплей. Вариантов выхода из ситуации было несколько: искать другой такой или похожий, поставить ТАЗогенератор, или сделать самопальный выпрямитель как понятно, я выбрал последнее. Заранее прошу пардону, хороших фоток не сохранилось. Остались только пару фоток, где он просто попал в кадр

Т.к. генератор на 95А, а ещё в СССР меня преподы учили, что юзают компоненты на >60% предельных параметров, либо недоумки, либо жадные барыги загнивающего капитализьма, то диоды были выбраны следующие: диоды с барьером Шоттки КД2998, они на 30А, попарно (т.е. 12штук)

взял 2 шт радиатора от советских электронных конструкторов «усил 25Вт», поставил их через распорки рёбрами внутрь, так, чтобы в торец встал вентилятор 80х80мм. Диоды смонтировал через изолирующие теплопроводящие слюдяные проставки. Тут же смонтировал вспомогательный выпрямитель «собственных нужд» в виде 3шт КД213. Такие диоды (не Шоттки) взял специально, чтобы прямое напряжение было повыше, а выпрямленное — пониже. Чтобы поднялось выходное напряжение на батарейке.

Отдельно пару слов скажу за вентилятор. Для подобных целей пригодны только вентиляторы с 2мя подшипниками (2 ball bearing). Про гидродинамические подшипники, плавающие втулки, и прочие высеры маркетолухов и продаванов не слушать, покупать только 2-подшипниковые. Любые другие мрут стремительно.

В результате применения диодов с барьером Шоттки, при токе 95А, потери в выпрямителе снижены с 142 до 47Вт. В реальности, это означает то, что даже с максимальной нагрузкой, радиаторы еле-тёплые

за время эксплуатации этого диодного моста, однажды, после запуска двигателя и зарядки высаженной вхлам батарейки 190АЧ, генератор смог сжечь шунт 100А/75мВ. Толщину шунта представляете себе? на последней фотке он справа. Выпрямитель не пострадал.

2. Намного позже, американец FORD TAURUS 1го поколения (да, да, именно такой, на котором рассекал Робокоп). Генератор на 130А. Сдох выпрямитель. По причине кривых рук конструкторов. Посмотрите на фото: диоды, что в голубенькой пластинке, разве могут нормально охладиться?

найти в продаже эту деталь мне не удалось. Покупать б/у генератор я не хотел: там будет точно такая же мина замедленного действия. Принял решение ваять самопальный выпрямитель.

да, у этого генератора применён 4-фазный диодный мост с парой диодов в цепи нейтрали.

Диодов КД2998 у меня не нашлось. Решил ваять из сдвоенных сборок диодов Шоттки в корпусе ТО-247, которые я надёргал из комповых БП. Как и в первом случае, я использовал по 2шт диодных сборки в качестве каждого диода моста, только в цепи нейтрали взял по 1шт сборке.

аналогично, была устроена «тепловая труба» в виде 2шо радиаторов от компа на сокет 478, в них была нарезана резьба М3, и через изолирующие теплопроводящие прокладки были прикручены сборки диодов. Сбори я подобрал попарно по прямому напряжению.

Тут же смонтировал вспомогательный выпрямитель, и регулятор напряжения

Особенности и принцип работы диода Шоттки

Если есть, то нужно их достать и заменить новым полупроводником, устранив неполадки самостоятельно, но лучше обратиться за помощью к профессионалам. Для всех приборов, имеющих барьерную структуру, свойственна несимметричность ВАХ, ведь именно количеством носителей электрического заряда обусловлена зависимость тока от напряжения.

Рассмотрим их: Если в полупроводниковом элементе возникнет пробоина, то он просто перестает держать ток и становится проводником.

Как видим, электроника не стоит на месте, и дальнейшие варианты применения быстродействующих приборов будет только увеличиваться, давая возможность разрабатывать новые, более сложные системы.

При дальнейшем его повышении диод Шоттки ведёт себя как обычный кремниевый выпрямительный диод. Однако большой процент обратного тока является очевидным недостатком. Как правило, они либо полностью пробиваются, либо дают утечку.

Отличие от других полупроводников

Сдвоенный диод — это два диода смонтированных в одном общем корпусе. Очень часто в принципиальных схемах сложное графическое изображение катода попросту опускают и изображают диод Шоттки как обычный диод.

Схема диодного моста

И самодельный мост, и промышленная диодная сборка изготавливаются по одной и той же схеме. Два диода последовательно спаиваются разноимёнными полюсами. Потом две пары спаивают одноимёнными полюсами на концах этих пар. К точкам соединения разноимённых полюсов подключается источник переменного напряжения, к точкам соединения одноимённых полюсов подключают нагрузку.

Диодные мосты применяются для выпрямления однофазного и трёхфазного тока.

Однофазный выпрямитель

Этот выпрямитель применяется в бытовой электронной технике чаще всего, так как бытовая электросеть однофазная. Как правило, пульсации выпрямленного тока с частотой 100 Гц не годятся для нормальной работы аппаратуры, появится неприятный звуковой фон – гудение. После выпрямителя следует ставить качественный сглаживающий фильтр из катушки индуктивности (последовательно) и конденсатора достаточной ёмкости (параллельно выходу выпрямителя).

Трёхфазный выпрямитель

Трёхфазные выпрямители на выходе дают меньшую частоту пульсаций, чем однофазные. Понижаются требования к сглаживающим фильтрам.

Схемы выпрямителей для трёхфазных цепей бывают однотактные и двухтактные. В однотактной схеме к каждой обмотке трёхфазного трансформатора подключается минус диода. Свободные концы каждой из трёх катушек соединяются в общую точку. Плюсы диодов тоже соединяются в одну точку. Нагрузка подключается между этими двумя общими точками.

Принципиальная схема однотактного трёхфазного моста-выпрямителя

Если требуется выходное напряжение более высокого значения, а пульсации поменьше, то собирается двухтактна схема. Собираются три пары диодов, в каждой паре плюсовой вывод одного подключается к минусу другого. Плюсовые выводы трёх пар тоже собираются в одну точку, так же объединяются минусы диодов, а общие точки в каждой паре диодов подключаются к свободным концам трёх обмоток вторичной обмотки трансформатора. Нагрузка подключается между общим минусом и плюсом сборки. В такой схеме выходное напряжение несколько выше, а пульсации намного меньше. Иногда можно обойтись без сглаживающего фильтра. Такая схема имеет название «Мостовой трёхфазный выпрямитель Ларионова».

Как сделать диодный мост своими руками

При необходимости и при наличии нужных диодов и паяльника нетрудно собрать диодный мост своими руками.

Что нужно для работы

Для работы нужно подготовить рабочее место с розеткой для паяльника, паяльник с подставкой, припой, канифоль, пинцет, маленькие кусачки. Конечно, нужны диоды с нужными характеристиками. При большом желании мост можно собрать на печатной плате с готовыми дорожками.

Проверка на работоспособность

Первая проверка всегда визуальная. Проверяется, те ли детали установлены, правильно ли собрана схема, качество пайки. Затем собирается проверочная схема с источником и измерительным прибором. И если этот этап прошёл успешно, то можно подключить нагрузку и провести окончательную проверку результатов своей работы.

Принцип действия полупроводникового диода

Название описываемого устройства ясно указывает, что эта конструкция состоит из диодов – полупроводниковых приборов, хорошо проводящих электричество в одном направлении и практически не проводящих его в противоположную сторону. Изображение этого прибора (VD1) на принципиальных схемах приведено на рис. 2в. Когда ток по нему течет в прямом направлении – от анода (слева) к катоду (справа), сопротивление его мало. При изменении направления тока на противоположное сопротивление диода многократно возрастает. В этом случае через него течет мало отличающийся от нуля обратный ток.

Поэтому при подаче на цепочку, содержащую диод, переменного напряжения Uвх (левый график), электричество через нагрузку течет только в течение положительных полупериодов, когда к аноду приложено положительное напряжение. Отрицательные полупериоды «срезаются», и ток в сопротивлении нагрузки в это время практически отсутствует.

Строго говоря, выходное напряжение Uвых (правый график) является не постоянным, хотя и течет в одном направлении, а пульсирующим. Нетрудно понять, что количество его импульсов (пульсаций) за одну секунду равно 50. Это не всегда допустимо, но пульсации можно сгладить, если подсоединить параллельно нагрузке конденсатор, имеющий достаточно большую емкость. Заряжаясь во время импульсов напряжения, в промежутках между ними конденсатор разряжается на сопротивление нагрузки. Пульсации сглаживаются, а напряжение становится близким к постоянному.

Изготовленный в соответствии в этой схемой выпрямитель называется однополупериодным, поскольку в нем используется лишь один полупериод выпрямленного напряжения. Наиболее существенные недостатки такого выпрямителя следующие:

Поэтому применяются такие схемы только для питания устройств малой мощности. Для исправления этой нежелательной ситуации разработаны двухполупериодные выпрямители, которые превращают отрицательные полуволны в положительные. Сделать это можно по-разному, но самый простой способ – использование диодного моста.

Схема диодного моста

Диодный мост – схема двухполупериодного выпрямления, содержащая 4 диода вместо одного (рис. 2в). В каждом полупериоде два из них открыты и пропускают электричество в прямом направлении, а два других закрыты, и ток через них не течет. Во время положительного полупериода положительное напряжение приложено к аноду VD1, а отрицательное – к катоду VD3. В результате оба этих диода открыты, а VD2 и VD4 – закрыты.

Во время отрицательного полупериода положительное напряжение приложено к аноду VD2, а отрицательное – к катоду VD4. Эти два диода открываются, а открытые во время предыдущего полупериода закрываются. Ток через сопротивление нагрузки течет в том же направлении. В сравнении с однополупериодным выпрямителем количество пульсаций возрастает вдвое. Результат – более высокая степень сглаживания при той же емкости конденсатора фильтра, увеличение КПД используемого в выпрямителе трансформатора.

Диодный мост может быть не только собран из отдельных элементов, но и изготовлен как монолитная конструкция (диодная сборка). Ее легче монтировать, а диоды обычно подобраны по параметрам. Немаловажно и то, что они работают в одинаковых тепловых режимах. Недостаток диодного моста – необходимость замены всей сборки при выходе из строя даже одного диода.

Еще ближе к постоянному будет пульсирующий выпрямленный ток, который позволяет получить трехфазный диодный мост. Его вход подключается к источнику трехфазного переменного тока (генератору или трансформатору), а напряжение на выходе почти не отличается от постоянного, и сгладить его еще проще, чем после двухполупериодного выпрямления.

Состав выпрямительного модуля

Всем, кто хотел бы более подробно ознакомиться с тем, что такое выпрямитель, советуем сделать небольшой исторический экскурс. Начнем с того, что прародителем выпрямительного моста считается изобретенная немецким ученым Л. Гретцем схема, собираемая на основе 4-х элементов (диодные сборки).

Обратите внимание! Эти устройства более известны под профессиональным названием «мостики Гретца» или двухполупериодный выпрямитель.

Такие сборки из четырех диодов со временем получили название мостовых схем, которые стали использоваться в качестве универсальных выпрямительных модулей.

Классический диодный мост схема которого представлена ниже, содержит в своем составе включенные определенным образом выпрямительные диоды.

Схема диодной сборки
Схема диодной сборки

Из приведенного выше рисунка видно, что в мостовую схему входят четыре полупроводниковых элемента (диода), порядок соединения которых соответствует встречно-параллельному принципу. Одна пара этих приборов включена в проводящем направлении, а другая – имеет обратное включение.

Кнопка стеклоподъёмника 2108, 2109, 21099, 2113, 2114, 2115

Металл-полупроводник: принцип работы перехода


Структура элемента

Принцип работы диода Шоттки основан на особенностях барьера. Эффект Шоттки при контакте компонентов, из которых выполнен непосредственно полупроводник и металл заключается в образовании бедного электронами участка. Последний имеет вентильные характеристики, аналогичные p-n взаимодействию. Контактный слой останавливает носителей заряда. По сравнению с другими типами полупроводниковых вентилей такое решение обладает:

  • минимальным обратным током;
  • стремящейся к нулю собственной емкостью;
  • обратным напряжением самой низкой допустимой величины;
  • при прямом включении — меньшим снижением напряжения (до 0.5 В в сравнении с 2-3 В в случае аналога).

В переходной зоне нет лишних носителей заряда. Благодаря этому там не возникают диффузии и рекомбинации, что наблюдается в контактных слоях p-n перехода. Так обеспечивается минимальная собственная емкость диода Шоттки, что делает возможным с большей эффективностью использовать его в устройствах с высокими и сверхчастотами.

Выпрямитель на основе диодного моста

Схема двухполупериодного выпрямителя на основе диодного моста, пригодная для сборки своими руками, изображена на рис. 3а. Выпрямлению подвергается напряжение, снимаемое со вторичной понижающей обмотки трансформатора Т. Для этого нужно подключить диодный мост к трансформатору.

Пульсирующее выпрямленное напряжение сглаживается электролитическим конденсатором С, имеющим достаточно большую емкость – обычно порядка нескольких тысяч мкФ. Резистор R играет роль нагрузки выпрямителя на холостом ходу. В таком режиме конденсатор С заряжается до амплитудного значения, которое в 1,4 (корень из двух) раза выше действующего значения напряжения, снимаемого со вторичной обмотки трансформатора.

С ростом нагрузки выходное напряжение уменьшается. Избавиться от этого недостатка можно, подключив к выходу выпрямителя простейший транзисторный стабилизатор. На принципиальных схемах изображение диодного моста часто упрощают. На рис. 3б показано, как еще может быть изображен соответствующий фрагмент на рис. 3а.

Следует заметить, что, хотя прямое сопротивление диодов невелико, тем не менее, оно отлично от нуля. По этой причине они нагреваются в соответствии с законом Джоуля-Ленца тем сильнее, чем больше величина тока, протекающего по цепи. Для предотвращения перегрева мощные диоды часто устанавливаются на теплоотводах (радиаторах).

Диодный мост – это практически обязательный элемент любого электронного устройства, питающегося от сети, будь то компьютер или выпрямитель для зарядки мобильного телефона.

Диодный мост схема, принцип работы

В подавляющем большинстве блоков питания для выпрямления переменного электрического тока используются диодные мосты. Рассмотрим диодный мост, схема включает в себя только 4 диода. На принципиальной схеме, диодный мост обозначают как квадрат повернутый на 45 градусов в центре квадрата на одной из диагоналей чертят диод, катод ближе к положительному выходу моста, анод ближе к отрицательному выходу моста. Оставшиеся две вершины квадрата являются входами переменного напряжения.

Рисуя схему моста достаточно помнить, что от каждого входа приходят к «+» выходу два диода, прием анод подключается на вход, а катод на выход. Тоже и с отрицательным выходом, только к выходу подключаются аноды диодов.

Проявление неисправностей диодов Шоттки

Как уже отмечалось, неисправность диодов Шоттки является одной из основных проблем современных блоков питания. Так по каким же предварительным признакам можно предположительно определить их неисправность? Таких признаков несколько. Во-первых, при пробоях и утечках вторичных выпрямительных диодов, как правило, срабатывает защита, и блок питания не запускается. Это может проявляться по-разному:

  • При включении блока питания вентилятор «дергается», т. е. совершает несколько оборотов и останавливается; после этого выходные напряжения полностью отсутствуют, т. е. источник питания блокируется.
  • После включения блока питания вентилятор «дергается» постоянно, на выходах блока питания можно наблюдать пульсации напряжения, т. е. защита срабатывает периодически, но блок питания при этом полностью не блокируется.
  • Признаком неисправности диодов Шоттки является чрезвычайно сильный разогрев вторичного радиатора, на котором они установлены.
  • Признаком утечки диодов Шоттки может являться самопроизвольное выключение блока питания, а значит и компьютера, при увеличении нагрузки (например, при запуске программ, обеспечивающих 100% загрузку процессора), а также невозможность запустить компьютер после «апгрейда», хотя мощность блока питания является достаточной.

Кроме того, необходимо осознавать, что в блоках питания с плохой и непродуманной схемотехникой, утечки выпрямительных диодов приводят к перегрузкам первичной цепи и к всплескам тока через силовые транзисторы, что может стать причиной их отказа. Таким образом, профессиональный подход к ремонту блоков питания, диктует обязательную проверку вторичных выпрямительных диодов при каждой замене силовых транзисторов-ключей первичной части блока питания.

Выбор типа сборки

Для каждой задачи существует свой оптимальный вариант выпрямительной диодной сборки. Все их можно условно разделить на 3 вида:

  • Выпрямитель на одном диоде. Применяется в самых простых и дешёвых схемах, где нет к.л. требований к качеству выходного напряжения, как, например, в ночниках.
  • Сдвоенный диод. Эти детали внешне похожи на транзисторы, ведь они выпускаются в таких же корпусах. Они также имеют 3 вывода. По сути, это два диода, помещённых в один корпус. Один из выводов – средний. Он может быть общим катодом или анодом внутренних диодов.
  • Полноценный диодный мост. 4 детали в одном корпусе. Подходит для устройств с большими токами. Применяется в основном на входах и выходах различных блоков питания и зарядных устройств.

Дополнительная информация. Выпрямители используются и в автомобилях. Они нужны для преобразования идущего с генератора переменного напряжения в постоянное. Оно, в свою очередь, необходимо для зарядки аккумулятора. Обычный бензогенератор вырабатывает переменный ток.

Условное обозначение и характеристики

На схеме диод Шоттки имеет особое обозначение. Отличие от обычного состоит в том, что перекладина у треугольника имеет загнутые края. Не один, как у стабилитрона, а оба. И края эти загнуты в разные стороны. На рисунке приведено обозначение по ГОСТу.

Как обозначается диод Шоттки на схеме

Диод Шоттки на схеме: условное обозначение

Про характеристики уже говорили. Это три основных параметра:

  • Падение напряжения при прямом переходе. Для диодов Шоттки оно ниже, чем у обычных кремневых. При мощности обратного пробоя до 100 В оно будет порядка 0,2-0,4 В (у кремниевых в среднем 0,6–07 В).
  • Напряжение пробоя. Обычное значение — до 200 В, но есть и изделия с напряжением более 1000 вольт.
  • Пример технических характеристик диодов Шоттки
    Параметры популярной серии диодов Шоттки 1N58**
  • Обратный ток. В нормальных условиях (до 20 °C) он не слишком велик — порядка 0,05 мА, но при повышении температуры резко повышается.

Приведённые параметры — средние. Есть довольно серьёзный разбег и для каждого случая можно подобрать нужные характеристики по каждому из пунктов. Иногда ещё важен такой параметр, как скорость переключения (быстродействие).

Область применения и назначение

Чаще всего диодные мосты используют в блоках питания. В трансформаторных БП они подключаются ко вторичной обмотке трансформатора

Схема подключения в трансформаторном БП

В импульсных БП – ко входу сети 220В. При этом электронная схема управления и силовая цепь ИБП питается от выпрямленного и сглаженного (не всегда) сетевого напряжения (достигает порядка 300-310 Вольт).

Выпрямители импульсного блока питания

На выводах вторичной обмотки импульсного блока питания высокочастотное переменное напряжение. Для того, чтобы его выпрямить, устанавливают сборки из сдвоенных диодов Шоттки. В связи с этим часто используют схему выпрямления со средней точкой.

Мост в генераторе автомобиля

В автомобилях и мотоциклах используются трёхфазные диодные мосты, собранные по схеме Ларионова с тремя дополнительными вентилями, потому что для питания бортовой сети используется трёхфазный генератор. Мост в генераторе выполняется в виде сектора окружности и устанавливается на его задней части.

Схема генератора автомобиля

Исключение составляют некоторые современные автомобили Toyota и прочих марок, в них используют 6 фазный генератор, для реализации двенадцатипульсной схемы выпрямления из 12 вентилей. Это нужно для снижения пульсации и увеличения выходного тока.

Автомобильный диодный мост на зарядное устройство

В данной статье мы постараемся дать ответ, что же это, диодный мост схема его и каково предназначение. И действительно, главный компонент диодного моста это диоды, для которых основное свойство пропускать напряжение только в одном направлении. Именно по этой характеристике определяют работоспособность диодов. Схема диодного моста состоит из правильно соединенных четырех диодов, а чтобы эта схема была работоспособной, к ней нужно правильно подключить переменное напряжение.

Мощные диоды Шоттки 2ДШ2942 АЕЯР.432120.555ТУ

Область применения

Кремниевые эпитаксиально – планарные мощные выпрямительные диоды с барьером Шоттки 2ДШ2942 и диодные сборки на их основе с общим катодом, с общим анодом, по схеме удвоения (далее по тексту — «диоды и диодные сборки») в беспотенциальных герметичных металлокерамических корпусах с планарными гибкими плоскими выводами, предназначенные для работы в устройствах преобразовательной техники и электроприводах аппаратуры специального назначения.

Категория качества диодов и диодных сборок — «ВП».

Принцип работы диодного моста

Представим, что на вход диодного моста подается переменное напряжение и в текущий момент на верхнем по рисунку входе присутствует положительный потенциал, то диоды VD2 и VD3 откроются так как к к ним приложено положительное напряжение (на рисунке путь тока показан линией красного цвета), а VD1 и VD4 будут заперты обратным напряжением. При обратной полярности входного напряжения ток потечет от нижнего входа через VD4, нагрузку и VD1 (на рисунке путь тока показан синим цветом), а VD2 и VD3 будут заперты обратным напряжением.

Источники

  • https://FokSevmash.ru/elektronika/diodnyj-most-svoimi-rukami.html
  • https://spk-kovka.ru/svarka/kak-sobrat-diodnyj-most.html
  • https://MasterServisNsk.ru/praktika/diodnyj-most-shottki.html
  • https://www.compel.ru/lib/54826
  • https://www.RadioElementy.ru/articles/diody-shottki-chto-eto-takoe-chem-otlichaetsya-kak-rabotaet/
  • https://instrument16.ru/instrument/diodnyj-most-iz-dvojnyh-diodov-shottki.html
  • https://tokzamer.ru/bez-rubriki/shemy-podkljucheniya-diodov-shottki
  • https://crast.ru/instrumenty/diody-shottki-kak-podkljuchit
  • https://ElectroInfo.net/poluprovodniki/kak-rabotaet-diod-s-barerom-shottki.html
  • https://amperof.ru/teoriya/diodnyj-most-sxema.html
  • https://howelektrik.ru/poleznye-stati/princzip-raboty-dioda-shottki-chto-takoe-diod-shottki.html
  • https://rentps3.ru/tehnika/diodnyj-most-iz-diodov-shottki.html

Понравилась статья? Поделиться с друзьями:
Bazliter.Ru
Adblock
detector