Тепловой насос для отопления дома: принцип работы и эффективность

Содержание
  1. Принципы работы
  2. Схемы циркуляции теплоносителей
  3. Контур съема потенциала энергии источника
  4. Внутренний контур
  5. В состав внутреннего контура входят:
  6. Выходной контур
  7. Расчет отопления дома с тепловым насосом
  8. Эффективность абсорбционного теплового насоса. Не только КПД
  9. «Бесплатное» тепло
  10. Работа в круглогодичном режиме
  11. Примерная стоимость системы отопления и расходы на эксплуатацию
  12. Что дешевле для отопления: электричество, газ или тепловой насос?
  13. Затраты на подключение
  14. Потребление
  15. Эксплуатация
  16. Откуда насос берет тепло?
  17. Конструктивное исполнение
  18. Грунтовые конструкции
  19. Установка зондов в скважинах
  20. Горизонтальные коллекторы
  21. Водные коллекторы
  22. Воздушный метод
  23. Основные характеристики
  24. Выходная мощность
  25. Возможности конструкций
  26. Коэффициент трансформации тепловых насосов Ктр
  27. Коэффициент преобразования энергии (ͼ)
  28. Условный КПД
  29. Годовая эффективность и издержки
  30. Показатель издержек Eq
  31. Использование тепловых установок в мире
  32. Преимущества и недостатки системы
  33. Отличительные черты
  34. Преимущества
  35. Недостатки
  36. Некоторые нюансы эксплуатации
  37. Особенности разных видов теплонасосов
  38. Основные элементы конструкции тепловых насосов
  39. Тепловой насос своими руками
  40. Рекомендации по установке и эксплуатации
  41. Выбираем тепловой насос: основные критерии
  42. Тепловые насосы типа «грунт – вода», «грунт – воздух»
  43. Горизонтальный коллектор
  44. Вертикальный коллектор

Принципы работы

Для обогрева здания используется перенос энергии источника низкого потенциала (температуры) теплоносителем к потребителю. В технологическом процессе используется закон термодинамики, обеспечивающий выравнивание тепловых энергий двух систем с разными температурами: передача мощности горячего источника холодному потребителю.

При использовании тепла окружающей среды осуществляется повышение его температурного потенциала для обогрева и горячего водоснабжения.

Источником регенеративного тепла могут быть:

  • поверхность земли или ее объем;
  • водная среда (озеро, река);
  • воздушные массы.

Более популярны модели, забирающие энергию от земли, поверхность которой обогревается солнечными лучами и энергией внешнего и внутреннего ядра планеты. Они отмечаются:

  1. лучшим сочетанием потребительских качеств;
  2. эффективностью;
  3. ценой.

Схемы циркуляции теплоносителей

При работе теплового насоса (ТН) используется три замкнутых контура, по которым циркулируют различные жидкости/газы — теплоносители. Каждый из них выполняет свои функции.

Принцип работы теплового насоса.

Контур съема потенциала энергии источника

При заборе тепла воздуха используется искусственный обдув корпуса испарителя воздушными потоками от вентиляторов.

Замкнутый цикл жидкого теплоносителя для передачи тепла водной среды или земли осуществляется по трубопроводам, которые соединяют змеевик испарителя с коллектором, утопленным на дно водоема либо заглубленным в землю на расстояние, превышающее промерзание грунта в сильные холода.

В качестве теплоносителя применяются незамерзающие жидкости на основе разбавленных водных растворов спирта. Их принято называть «антифризы» или «рассолы». Они под влиянием более высокой температуры (≥+3ºС) поднимаются к испарителю, передают ему тепло, а после охлаждения (≈-3ºС) самотеком направляются назад к источнику энергии, обеспечивая непрерывную циркуляцию.

Внутренний контур

По нему циркулирует хладагент на основе фреона, «поднимая» тепло на более высокий уровень. Под действием температуры он последовательно переходит в газообразное и жидкостное состояние.

В состав внутреннего контура входят:

  • испаритель, забирающий энергию от рассолов и передающий ее фреону, который при этом закипает и становится разреженным газом;
  • компрессор, сжимающий газ до высокого давления. При этом резко увеличивается температура фреона;
  • конденсатор, в котором горячий газ передает свою энергию теплоносителю выходного контура, а сам остывает, переходя в жидкое состояние;
  • дроссель (расширительный клапан), редуцирующий фреон за счет перепада давления до состояния насыщенного пара для поступления в испаритель. При прохождении хладагента через узкое отверстие давление теплоносителя падает до начального значения.

Выходной контур

Здесь циркулирует вода. Она обогревается в змеевике конденсатора для использования в обычной жидкостной системе отопления. При этом способе ее температура достигает порядка 35ºС, что обусловливает ее применение в системе «Теплый пол» с длинными магистралями, позволяющими равномерно передавать генерируемую энергию всему объему помещения.

Использование только радиаторов отопления, создающих меньшие объемы теплообмена с пространством комнат, не так эффективно.

Расчет отопления дома с тепловым насосом

Для нормальной работы теплоперекачивающей установки необходима качественная теплоизоляция здания. Поэтому перед покупкой теплового насоса необходимо утеплить стены, пол и потолки, после чего выполнить расчет тепловых потерь (Q).

Упрощенная формула подсчета количества тепла (Вт), уходящего из дома через ограждающие конструкции (стены, окна, пол, потолок) выглядит так:

Q = S х (разница температур воздуха в помещении и на улице)/ Rт.

S –площадь ограждающей конструкции в м2;

Rт – тепловое сопротивление материала ограждающей конструкции (берут из таблиц СНиП по строительной теплотехнике).

Поочередно подсчитав теплопотери стен, окон, пола и потолка их суммируют и получают количество киловатт, теряемых домом за 1 час в самый холодный период года. Мощность теплонасоса должна быть не меньше суммарной величины теплопотерь. Если кроме отопления установка будет греть воду для бытовых нужд, то ее мощность увеличивают на 20%.

Выбирая теплонасос «воздух-воздух» или «воздух-вода» следует ориентироваться на тепловую мощность, которую он развивает в области низких температур, поскольку она значительно ниже мощности при работе в теплый период года.

В качестве примера приведем параметры воздушно-водяной установки NIBE FIGHER F2300-14. Работая в температурном диапазоне от +7 до + 45С, она выдает около 18 кВт, а при температуре воздуха -15С всего 10,7 кВт.

Эффективность абсорбционного теплового насоса. Не только КПД

Говорить о коэффициенте полезного действия теплового насоса в классическом понимании этого термина не совсем правильно, поскольку стандартная формула вычисления КПД в этом случае будет некорректна из-за неучтенного бесплатного источника энергии – воздуха, воды или грунта. Ведь помимо греющего источника энергии АБТН использует и низкопотенциальное тепло, которое количественно учесть не всегда представляется возможным. Это и есть основная ошибка при расчёте КПД теплового насоса.

Для оценки эффективности работы абсорбционного теплового насоса применяется коэффициент трансформации (COP — coefficient of performance), который вычисляется следующим образом:

COP=Q3/Q1,

где Q1 – тепло, подведенное с греющим источником, Q3 – полезное тепло на выходе из АБТН.

Количественно, наилучший COP для абсорбционных тепловых насосов составляет 1,7. Для парокомпрессионных тепловых насосов, работающих от электрической энергии, коэффициент трансформации может достигать 5.

Однако, есть как минимум два важных фактора, которые, несмотря на более низкий COP АБТН, делают общую эффективность системы выше.

«Бесплатное» тепло

Во-первых, абсорбционный тепловой насос позволяет отказаться от дополнительного сжигания топлива, используя избытки уже выработанного для других нужд тепла. Рассмотрим самые распространенные источники такого тепла:

Горячая вода

Греющий источник на предприятии часто можно обнаружить в виде горячей воды от существующих котельных установок или иного технологического оборудования. При этом вся тепловая энергия, используемая для процесса абсорбции (и энергия греющего источника, и энергия низкопотенциального контура), полностью возвращается в систему централизованного теплоснабжения.

Пар

Избытки свежего пара или не утилизированный отработанный пар также могут играть роль греющего источника на предприятии. В первую очередь, это пар, получаемый на котлах-утилизаторах в технологических процессах, пар с отборов турбин, от РОУ или турбин с противодавлением.

Дымовые и уходящие газы

Для повышения эффективности котлов центрального отопления традиционным решением является установка экономайзеров для охлаждения дымовых газов и максимальное извлечение энергии.

Однако таким образом происходит только охлаждение дымовых газов до температуры, чуть превышающей температуру в обратном трубопроводе теплосети, а это означает потерю большого количества энергии и ее сброс через дымовую трубу, часто при температуре около 50 °C или выше. При использовании абсорбционного теплового насоса дымовой газ может быть охлажден до температур, как правило, ниже 20 °С, а в лучшем случае и до 10 °С.

Это означает, что имеющаяся тепловая энергия может быть использована в системе центрального теплоснабжения практически полностью.

Оборотная вода

Водооборотные циклы в промышленности применяются повсеместно. Подавляющее большинство предприятий используют открытые циклы оборотного водоснабжения с применением мокрых башенных или вентиляторных градирен. Выше мы рассматривали конкретный пример по использованию низкопотенциального тепла оборотной воды.

Сточные воды

Тепло сточных вод предприятий с температурой менее 40 °С широко используется в мировой практике в качестве дополнительного источника тепла для нагрева сетевой воды. Подобные решения позволяют, помимо прочего, снизить тепловое загрязнение окружающей среды и нагрузку на очистные сооружения, построенные с применением биотехнологий (при повышенных температурах бактерии, отвечающие за очистку сточных вод, погибают).

Работа в круглогодичном режиме

Принимая во внимание отсутствие отопительной нагрузки в летний период, абсорбционные тепловые насосы имеют техническую возможность работать летом в режиме холодильных машин, а поэтому находят свое применение в установках централизованного охлаждения.

В «социальную инфраструктуру» градообразующих предприятий часто входят спортивные объекты, медицинские учреждения, локальные культурные и образовательные центры. Для всех этих объектов вопрос кондиционирования может быть решен с помощью абсорбционных тепловых насосов, работающих в режиме охлаждения, а значит есть возможность организовать холодоснабжение без дополнительных капитальных затрат.

В качестве альтернативного варианта, вырабатываемый холод в летний период может использоваться для нужд самого предприятия в технологических процессах или для охлаждения оборудования.

Таким образом, «социальная» теплофикационная нагрузка на промышленные предприятия из разряда обременения может перейти в разряд преимуществ. В качестве результата собственник производства повышает его энергоэффективность, снижает эксплуатационные затраты на выработку тепла и холода, повышает экологичность производства и усиливает статус социально ответственного предприятия в регионе.

Примерная стоимость системы отопления и расходы на эксплуатацию

Купить тепловой насос для отопления дома, цена которого соответствует окупаемости за 3 года, можно в Москве у таких фирм как Nibe, Vaillant, Brosk, Henk.

ТН фирмы Cooper & Hunter приспособлен к работе в северных странах и эффективно работает при температурах от минус 25 °С до плюс 48 °С — эффективную и стабильную работу обеспечивает специальный алгоритм, обеспечивающий нормальное функционирование при отрицательных температурах.

Технические данные:

  • внешний + внутренний блок;
  • режимы обогрева и охлаждения;
  • предназначен для водяного отопления и ГВС (горячего водоснабжения);
  • мощность обогрева — 9,6 кВт.

Цена под ключ ТН в среднем составляет приблизительно 300—400 тысяч рублей. Система «воздух — вода» — самый дешевый вариант, так как для нее не требуется производить дорогостоящие земляные работы.

Стоимость установки насосов зависит от различных факторов: выполняемых ими функций, площади здания, перечня работ, выбора производителя.

Примерные цены:

  • если площадь дома составляет 80-120 кв. м, то цена будет от 334 до 500 тысяч рублей;
  • если площадь дома — 220-280 кв. м, установка ТН обойдется от 520 до 800 тысяч рублей;
  • высокотемпературный ТН «Корса-32В» стоит примерно 560 тысяч рублей;
  • модель «Корса-10» среднетемпературная — около 320 тысяч рублей.

Тепловой насос

Что дешевле для отопления: электричество, газ или тепловой насос?

Приведем затраты на подключение каждого из типа отопления. Для представления общей картины возьмем Московскую область. В регионах цены могут отличаться, но соотношение цен останется прежним. В расчетах принимаем, что участок «голый» — без проведеного газа и электричества.

Затраты на подключение

Тепловой насос. Укладка горизонтального контура по ценам МО – 10 000 рублей за смену экскаватора с кубовым ковшом (выбирает до 1 000 м³ грунта за 8 часов). Система для дома в 100 м² будет закопана за 2 дня (справедливо для суглинка, на котором можно снять до 30 Вт тепловой энергии с 1 м.п. контура). Порядка 5 000 рублей потребуется для подготовки контура к работе. В итоге, горизонтальный вариант размещения первичного контура обойдётся в 25 000.

Скважина выйдет дороже (1 000 рублей за погонный метр, с учётом монтажа зондов, обвязки их в одну магистраль, заправкой теплоносителем и опрессовкой.), но значительно выгоднее для будущей эксплуатации. При меньшей занятой площади участка возрастает отдача (для скважины 50 м – минимум 50 Вт с метра). Покрываются потребности насоса, появляется дополнительный потенциал. Поэтому вся система будет работать не на износ, а с некоторым запасом мощности. Разместить 350 метров контура в вертикальных скважинах – 350 000 рублей.

Газовый котёл. В Московской области за подключение к газовой сети, работы на участке и монтаж котла «Мособлгаз» запрашивает от 260 000 рублей.

Электрический котел. Подключение трёхфазной сети обойдётся в 10 000 рублей: 550 – местным электросетям, остальное – на распределительный щит, счётчик и прочее наполнение.

Потребление

Для работы ТН с тепловой мощностью 9 кВт требуется 2.7 кВт/ч электроэнергии – 9 руб. 53 коп. в час,

Удельная теплота при сгорании 1 м³ газа – те же 9 кВт. Бытовой газ для МО выставлен по 5 руб. 14 коп. за куб.

Электрокотёл потребляет 9 кВт/ч = 31 руб. 77 коп. в час. Разница с ТН – почти в 3,5 раза.

Эксплуатация

  • Если подведён газ, то наиболее рентабельный вариант для отопления – газовый котёл. Стоит оборудование (9 кВт) минимум 26 000 рублей, месячная оплата за газ (по 12 ч/сутки) составит 1 850 рублей.
  • Мощное электрооборудование выгоднее с точки зрения организации трёхфазной сети и приобретения самого оборудования (котлы – от 10 000 рублей). Тёплый дом будет стоить 11 437 рублей за месяц.
  • С учётом первоначальных вложений в альтернативное отопление (оборудование 275 000 и монтаж горизонтального контура 25 000), ТН, расходующий электричества на 3 430 руб/месяц, окупится не ранее чем через 3 года.

Сравнивая все варианты отопления, при условии создания системы «с нуля», становится очевидным: газ будет не намного выгоднее геотермального теплонасоса, а обогрев электричеством в перспективе 3 лет безнадёжно проигрывает обоим этим вариантам.

С подробными расчётами в пользу эксплуатации теплового насоса можно ознакомиться, просмотрев видео от производителя:

Некоторые дополнения и опыт эффективной эксплуатации освещены в этом ролике:

Откуда насос берет тепло?

 Функционирует тепловой насос, благодаря эксплуатации природных низкопотенциальных источников тепловой энергии, среди которых:

  • окружающий воздух;
  • водоемы (реки, озера, моря);
  • грунт и грунтовые артезианские и термальные воды. 

Теплоноситель, забирающий на себя тепло из окружающей среды, циркулирует по внешнему контуру. Он попадает в испаритель насоса и отдает хладагенту примерно 4 -7 °C, притом, что его температура кипения равна -10 °C. В результате хладагент закипает и дальше переходит в газообразное состояние. Уже охлажденный теплоноситель во внешнем контуре направляется на следующий виток для набора температуры.

Состоит функциональный контур теплового насоса из:

  • испарителя;
  • хладагента;
  • электрического компрессора;
  • конденсатора;
  • капилляра;
  • терморегулирующего управляющего устройства. 

Процесс, как работает тепловой насос, выглядит примерно так:

  • хладагент после закипания, двигаясь по трубопроводу, попадает в компрессор, работающий при помощи электроэнергии. Это устройство сжимает хладагент, находящийся в газообразном состоянии, до высокого давления, что вызывает повышение его температуры;
  • горячий газ попадает в другой теплообменник (конденсатор), в котором тепло хладагента отдается теплоносителю, циркулирующему по внутреннему контуру отопительной системы, или воздуху в помещении;
  • остывая, хладагент переходит в жидкое состояние, после чего проходит сквозь капиллярный редукционный клапан, теряя давление, и затем снова оказывается в испарителе;
  • таким образом, цикл завершился, и процесс готов повториться. 

Конструктивное исполнение

Промышленность выпускает различные по эксплуатационным характеристикам модели, но они имеют в своем составе оборудование, выполняющее типовые задачи, описанные выше.

Как вариант конструктивного исполнения на рисунке представлен тепловой насос для отопления дома.

Состав теплового насоса.

Здесь по входным трубопроводам принимается тепло от геотермальных источников, а по выходным — передается в систему обогрева дома.

Работа теплового насоса обеспечивается:

  • системой контроля параметров схемы и управления, включая дистанционные способы через интернет;
  • дополнительным оборудованием (узлы промывки и заполнения, расширительные баки, группы безопасности, насосные станции).

Грунтовые конструкции

Они используют три схемы устройства теплообменников для забора энергии от источника:

  1. поверхностное расположение;
  2. установка вертикальных грунтовых зондов;
  3. заглубление горизонтальных конструкций.

Первый метод наименее эффективен. Поэтому он редко применяется для отопления дома.

Установка зондов в скважинах

Этот способ наиболее эффективен. Он предусматривает создание скважин на глубины порядка 50÷150 метров и больше для размещения U-образного трубопровода из пластиковых материалов с диаметром от 25 до 40 мм.

Увеличение площади поперечного сечения трубы, как и углубление скважины, создает улучшенный теплосъем, но удорожает конструкцию.

Горизонтальные коллекторы

Бурение скважин для зондов стоит дорого. Поэтому часто выбирается этот способ, как более дешевый. Он позволяет обойтись рытьем траншей ниже глубины промерзания почвы.

В проекте горизонтального коллектора следует учитывать:

  1. теплопроводность грунта;
  2. среднюю влажность почвы;
  3. геометрию участка.

Они влияют на габариты и конфигурацию коллектора. Трубы могут укладываться:

  • петлями;
  • зигзагами;
  • змейкой;
  • плоскими геометрическими фигурами;
  • винтовыми спиралями.

Важно понимать, что площадь участка, отводимого под такой коллектор, обычно превышает габариты фундамента дома в 2÷3 раза. Это основной недостаток такого метода.

Водные коллекторы

Это наиболее экономичный способ, но он требует расположения около здания глубокого водоема. На его дне размещают и закрепляют грузами собранные трубопроводы. Для эффективной работы теплового насоса требуется просчитать минимальную глубину закладки коллектора и объем водоема, способного обеспечить теплосъем.

Габариты такой конструкции определяются проведением тепловых расчетов и могут достигать протяженности более 300 метров.

Рисунок ниже демонстрирует подготовку магистралей для сборки на льду весеннего озера. Он позволяет визуально оценить масштабы предстоящей работы.

Воздушный метод

Внешний или встроенный вентилятор нагнетает воздух с улицы прямо на испаритель с фреоном, как в кондиционере. При этом не требуется создавать громоздкие конструкции из труб и помещать их в грунт или водоем.

Тепловой насос для отопления дома, работающий по такому принципу, стоит дешевле, но использовать его рекомендуется в относительно теплом климате: морозный воздух не позволит работать системе.

Подобные устройства нашли широкое применение для обогрева воды в бассейнах или помещений, расположенных рядом с промышленными устройствами, постоянно участвующими в технологическом процессе и выделяющими в атмосферу тепло мощными системами охлаждения. В качестве примера можно привести силовые автотрансформаторы энергетики, дизельные станции, котельные.

Основные характеристики

При выборе модели ТН следует учитывать:

  • выходную тепловую мощность;
  • коэффициент трансформации тепловых насосов;
  • условный кпд;
  • годовую эффективность и издержки.

Выходная мощность

При создании нового проекта дома учитывают его потребности в тепле с учетом конструктивных особенностей материалов, создающих теплопотери через стены, окна, двери, потолок и пол помещений различных габаритов. Расчет учитывает создание комфорта при самых низких морозах в конкретной местности.

Потребляемая тепловая мощность здания выражается в кВт. Она должна покрываться вырабатываемой энергией теплового насоса. Однако часто при расчетах делают упрощение, позволяющее экономить: длительность самых холодных дней в течение года не превышает нескольких недель. На этот период подключается дополнительный источник тепла, например, ТЭНы, подогревающие воду в котле.
Они работают только в критических ситуациях при морозах, а в остальное время отключены. Это позволяет использовать ТН с меньшими мощностями.

Возможности конструкций

Для справки. Модели выходной мощности 6÷11 кВт «рассольно-водяных» схем способны нагревать воду встроенных баков в относительно небольших постройках. Мощность в 17 кВт достаточна для поддержания температуры воды 65ºС у котла с емкостью 230÷440 литров.
Потребности в тепле средних по величине зданий покрывают мощности 22÷60 кВт.

Коэффициент трансформации тепловых насосов Ктр

Он определяет эффективность конструкции по безразмерной формуле:

Kтр=(Твых-Твх)/Твых

Величина «Т» обозначает температуру теплоносителей на выходе и входе в конструкцию.

Коэффициент преобразования энергии (ͼ)

Его рассчитывают для определения доли полезной мощности тепла по отношению к приложенной энергии на компрессор.

ͼ=0,5Т/(Т-То)=0,5(ΔТ+То)/ΔТ

Для этой формулы температура потребителя «Т» и источника «То» определяется в градусах Кельвина.

Величину ͼ можно определить по количеству затраченной энергии на работу компрессора «Рэл» и полученной полезной теплопроизводительности «Рн». В этом случае его называют «СОР» по сокращению от английского термина «Coefficient of perfomance».

ͼ=Рн/Рэл

Коэффициент ͼ — переменная величина, зависимая от перепада температур между источником и потребителем. Он обозначается цифрами от 1 до 7.

Условный КПД

Некоторые продавцы в рекламных целях «называют» показатель СОР термином КПД и заявляют, что он больше единицы и составляет 400 или 500%.

Это неверное утверждение: коэффициент полезного действия учитывает потери мощности при работе конечного устройства.
Для его определения надо выходную тепловую мощность разделить на приложенную с учетом энергии геотермальных источников. При таком расчете вечного двигателя не получится.

Годовая эффективность и издержки

Коэффициент СОР оценивает работу теплового насоса в определенный момент времени при конкретных условиях эксплуатации. Чтобы проанализировать работу ТН, введен показатель эффективности системы за год (β).

β=Qwp/WeІ

Здесь символ Qwp обозначает величину тепловой энергии, произведенной за год, а Wel — значение потребленного электричества установкой за то же время.

Показатель издержек Eq

Эта характеристика обратна показателю эффективности.

Eq=1/β

Для определения характеристик ТН используется специализированное программное обеспечение и заводские стенды.

Использование тепловых установок в мире

Практика применения таких тепловых агрегатов в мире насчитывает уже более 50 лет. Главными движущими причинами такого явления стало удорожание традиционных энергетических ресурсов и повсеместная поддержка правительствами многих стран использования альтернативных источников энергии.

Поэтому количество тепловых насосов постоянно растет высокими темпами – до 10 — 30% в год, несмотря на высокую стоимость установки. Количество таких устройств в настоящее время составляет уже более 270 штук. Наиболее активно тепловые системы применяются в США и Канаде. На них приходится до половины установок, используемых во всем мире.

Россия, несмотря на положительные условия для применения тепловых насосов, отстает от мировых тенденций в их использовании. Здесь, по-видимому, играет роль наша убежденность в полной обеспеченности природными ресурсами. При этом, далеко не во всех населенных пунктах страны имеются газопроводы. Мировой опыт использования тепловых наcосов говорит о положительных тенденциях в развитии их использования.

Преимущества и недостатки системы

Установка теплового насоса дома и включение его в систему отопления или создание полноценной отопительной станции решит ряд насущных проблем и имеет следующие преимущества:

  • это автономная система отопления, единственным централизованным элементом которой является подключение к электросети;
  • этот способ позволяет значительно сэкономить на дорогостоящих энергетических носителях, которые традиционно применяются для отопления и существенно снизить затраты на коммунальные услуги. Средний Коэффициент преобразования теплоты равен 3,5 – 4,5. Из 1 кВт электроэнергии насос вырабатывает от 3 до 7 кВт тепла. Это самые высокие показатели среди всех видов котлов, работающих на любом топливе;
  • система безопасна для здоровья человека и для экологии. Она помогает сберечь невозобновляемые энергоресурсы планеты;
  • пожарная безопасность и невоспламеняемость деталей. Этот котёл не перегревается, не взрывается, не горит, не выделяет угарный газ;
  • один насос может вырабатывать как тепло, так и холод, обеспечивая нужный микроклимат в доме, а также нагревать воду для бытовых нужд;
  • долговечность – по опыту европейских жителей срок службы оборудования составляет 20-50 лет;
  • комфорт и бесшумная работа. Управление системой осуществляется с помощью автоматики;
  • установка насоса не требует согласований, которые нужны при монтаже, например, газового оборудования.

В Норвегии и Швеции 95% всех домов отапливаются тепловыми насосами.

Бойлерная в доме

Преимуществ у такой системы гораздо больше, чем недостатков

К недостаткам можно отнести:

  • относительно высокую стоимость установки и самого насоса, окупаемость такой системы напрямую зависит от интенсивности её эксплуатации;
  • необходимость привлечения специалистов и применения специальной бурильной и иной техники для обустройства геотермального насоса с вертикальным контуром, глубина которого может достигать 200 м.

Отличительные черты

Преимущества

Отопление дома тепловым насосом в сравнении с другими системами обладает:

  1. хорошими параметрами экологичности;
  2. большим сроком службы оборудования без технического обслуживания;
  3. возможностью простого переключения режима обогрева зимой на кондиционирование летом;
  4. высокой годовой эффективностью.

Недостатки

На стадии проекта и при эксплуатации приходится учитывать:

  1. сложность выполнения точных технических расчетов;
  2. высокую стоимость оборудования и монтажных работ;
  3. возможности образования «воздушных пробок» при нарушениях технологии укладки трубопроводов;
  4. ограниченную температуру воды на выходе из системы (≤+65ºС);
  5. строгую индивидуальность каждой конструкции для любого здания;
  6. потребность больших площадей для коллекторов с исключением строительства объектов на них.

Некоторые нюансы эксплуатации

Эффективное использование принципа работы теплового насоса требует соблюдения нескольких условий:

  • помещение, которое обогревается должно быть хорошо утеплено (теплопотери до 100 Вт/м2) — иначе, забирая тепло с улицы, будете греть улицу за свои же деньги;
  • тепловые насосы выгодно применять для низкотемпературных систем отопления. Под такие критерии отлично подходят системы теплый пол (35-40 °C). Коэффициент преобразования тепла существенно зависит от соотношения температур входного и выходного контуров.

Некоторые нюансы эксплуатации

Подытожим сказанное!

Суть принципа работы теплового насоса не в производстве, а в переносе тепла. Это позволяет получить высокий коэффициент (от 3 до 5) преобразования тепловой энергии. Проще говоря, каждый использованный 1 кВт электроэнергии «перенесет» в дом 3-5 кВт тепла. Еще что-то нужно говорить?

Особенности разных видов теплонасосов

Воздушные – самые дешевые из тепловых насосов, имеют низкую производительности зимой и высокую летом. Это обусловлено тем, что температура воздуха сильно зависит от сезона. Они просты в монтаже и подключении, их чаще используют для обогрева весной или осенью или как дополнительный источник дешевого тепла.

Цены тепловых насосов, водяного и грунтового (геотермального) типов, мало отличаются. Но стоимость укладки магистрали в водоем ниже чем бурение скважин или укладка геотермального поля. Поэтому если рядом есть озеро, пруд или река, целесообразнее устанавливать водяной ТН.

Основные элементы конструкции тепловых насосов

Для того чтобы установка получения энергии работала согласно принципам работы теплового насоса, в его конструкции должны присутствовать 4 основных агрегата, это:

  • Компрессор.
  • Испаритель.
  • Конденсатор.
  • Дроссельный клапан.

Важным элементом конструкции теплового насоса является компрессор. Его основная функция – повышение давления и температуры паров, образующихся в результате кипения хладагента. Для климатической техники и тепловых насосов в частности применяются современные спиральные компрессоры.

Устройство и принцип действия теплового насоса
В качестве рабочего тела, осуществляющего непосредственный перенос тепловой энергии, используются жидкости с низкой температурой кипения. Как правило, используется аммиак и фреоны (+)

Такие компрессоры рассчитаны на эксплуатацию при минусовых температурах. В отличие от других разновидностей спиральные компрессоры производят мало шума и работают, как при низких температурах кипения газа, так и при высоких температурах конденсации. Несомненным преимуществом считаются их компактные размеры и небольшой удельный вес.

Агрегаты системы теплового насоса
Практически вся энергия теплового насоса затрачивается на транспортировку тепловой энергии извне внутрь помещения. Так на работу систем уходит около 1 энергетической единицы при производстве 4 – 6 единиц (+)

Испаритель как конструктивный элемент представляет собой емкость, в которой происходит превращение в пар жидкого хладагента. Хладагент, циркулируя по замкнутому контуру, проходит через испаритель. В нем хладагент разогревается и превращается в пар. Образующийся пар под низким давлением направляется в сторону компрессора.

В компрессоре пары хладагента подвергаются действию давления и их температура возрастает. Компрессор перекачивает под большим давлением разогретый пар в сторону конденсатора.

Компрессор - значимый агрегат теплового насоса
Компрессор сжимает циркулирующую по контуру среду, в результате чего увеличивается ее температура и давление. Затем сжатая среда поступает в теплообменник (конденсатор), где охлаждается, передавая тепло воде либо воздуху

Следующий конструктивный элемент системы – конденсатор. Его функция сводится к отдаче тепловой энергии внутреннему контуру отопительной системы.

Серийные образцы, изготавливаемые промышленными предприятиями, оснащаются пластинчатыми теплообменниками. Основным материалом для таких конденсаторов служит легированная сталь или медь.

Самодельный теплообменник для теплового насоса
Для самостоятельного изготовления теплообменника подойдет медная трубка диаметром полдюйма. Толщина стенок труб, используемых для изготовления теплообменника, должна быть не менее 1 мм

Терморегулирующий, или иначе дроссельный, клапан устанавливается в начале той части гидравлического контура, где циркулирующая среда высокого давления преобразуется в среду с низким давлением. Точнее дроссель в паре с компрессором делят контур теплового насоса на две части: одну с высокими параметрами давления, другую – с низкими.

При прохождении через расширительный дроссельный вентиль циркулирующая по замкнутому контуру жидкость частично испаряется, вследствие чего давление вместе с температурой падают. Затем поступает в теплообменник, сообщающийся с окружающей средой. Там захватывает энергию среды и переносит ее обратно в систему.

С помощью дроссельного клапана происходит регулирование потока хладагента в сторону испарителя. При выборе клапана нужно учитывать параметры системы. Клапан должен соответствовать этим параметрам.

Дроссельный клапан теплового насоса
При прохождении через теплорегулирующий клапан жидкий теплоноситель частично испаряется, а температура потока понижается (+)

Тепловой насос своими руками

Использовать тепловые насосы для отопления помещения, очень выгодно. На российском рынке данная продукция представлена следующими фирмами: Vaillant (Германия), Nibe (Швеция), Danfoss (Дания), Mitsubishi Electric (Япония), Mammoth (США), Viessmann (Германия). Неплохого качества, совершенно не уступающего по качеству западным аналогам продукция отечественных фирм SunDue и Henk.

Средняя цена под ключ теплонасоса составляет примерно 450-500 тысяч рублей. Наиболее бюджетной является система «воздух-вода», так как данная система не требует проведения дорогостоящих земляных работ.

Но цена самого оборудования, да и монтажные работы доступны далеко не каждому. Дома, чья площадь составляет более 400 м2 , достаточно быстро окупают деньги вложенные в оборудование данной системы. Но если дом намного меньше, деньги сэкономить на отоплении, таким образом, не получится. В этом случае такую систему можно сделать самостоятельно.

Для начала необходимо приобрести компрессор. Для этой цели подойдет агрегат, которым оборудуется обычный кондиционер. Он крепится на стену. Конденсатор можно сделать своими руками. Для этого необходимо создать из медных трубок змеевик, который помещается в корпус, выполненный из пластика.

Испаритель также монтируется на стену. Пайка, заправка фреоном и прочие подобные работы должны выполняться только человеком, обладающим соответствующими навыками. Неумелые действия не только могут повлечь за собой отрицательный результат, но и в процессе их можно получить серьезные травмы.

Рекомендации по установке и эксплуатации


Установка теплового насоса производится специальными бригадами. Владельцу участка нужно выполнить некоторые рекомендации.

  • Наружный блок воздушного насоса нужно ставить на металлическую подставку возле стены, а не крепить на кронштейны.
  • Размещают установку под козырьком или навесом, чтобы предупредить налипание снега на блок, перекрытие, замерзание дренажных отверстий.
  • При монтаже устройства нужно проследить за тем, чтобы дренажное отверстие не оказалось перекрыто.
  • Запрещается устанавливать внешние блоки один над другим, так как при включении режима оттайки нижние модули будут залиты водой.
  • Если предназначен тепловой насос для отопления, межблочные трубы нужно теплоизолировать. Толщина теплоизоляции не менее 9 мм.
  • Если ТНУ используют для нагрева воды, нужно выбирать бойлер с косвенным нагревателем.

Оборудование необходимо заземлить.

Выбираем тепловой насос: основные критерии

Тем, кто планирует приобрести такое оборудование, рекомендуется выбирать подходящую модель по следующим критериям:

  • Климатические условия в регионе проживания. Для регионов с морозными зимами подойдет только ограниченное количество моделей;
  • Доступ к источникам тепловой энергии. Для геотермальных насосов – это наличие на участке свободной территории, для гидротермальных ТН – наличие вблизи водоёмов, грунтовых вод;
  • Площадь отапливаемого объекта, его энергоэффективность. Чем больше дом, тем более сложным и дорогостоящим будет тепловой насос: мощные модели требуют значительных затрат на монтаж.
  • Бюджет на покупку. Наиболее доступны по цене аэротермальные насосы, не требующие больших затрат на установку.

Расчет мощности теплового насоса. Какой мощностью должен обладать насос? Чтобы рассчитать нужную вам мощность, нужно знать следующие параметры: объём теплоотдачи отопительным системам, общую площадь поверхности труб в испарители и конденсаторе, а также объём рабочей жидкости (хладагента).

Удобным решением в этом случае будет использование для расчетов онлайн калькулятора. Чаще всего там требуется ввести:

  • высоту потолков и общую площадь дома (высчитывается отапливаемая площадь);
  • регион проживания (определяется средние температуры воздуха);
  • энергоэффективность объекта (степень утепления дома) – рассчитывается требуемая производительность теплового насоса.

Пример расчетов. Для отопления дома площадью 150 м² рекомендуется ТН производительностью 11-13 кВт.

Тепловой насос

Тепловые насосы типа «грунт – вода», «грунт – воздух»

На глубине ниже 10 м температура грунта практически постоянна в течение всего года. Насосы типа «грунт – вода» используют тепловую энергию земли и передают ее для обогрева дома через систему водяного отопления. В тепловых насосах, работающих по принципу «грунт – воздух», тепловая энергия также отбирается у грунта и через компрессор напрямую передается воздуху, который используется для отопления зданий.

Механизм теплообмена следующий:

  • Энергия, отобранная от земли, аккумулируется носителем, в качестве которого чаще всего используется незамерзающая жидкость — антифриз («рассол»).
  • Опускаясь вниз по теплообменнику, «рассол» отбирает у грунта тепло (примерно 3 — 4 °С) и передает его фреону, циркулирующему во внутреннем контуре теплового насоса.
  • Фреон, проходя через каналы испарителя, закипает и испаряется.
  • Образовавшийся при этом пар поступает в компрессор, сжимается там (при этом температура его повышается), после чего горячий и сжатый пар направляется в теплообменник конденсатора, где охлаждается, передавая тепло воде.
  • Вода используется в системе отопления и горячего водоснабжения, а жидкий фреон стекает на дно конденсатора, откуда, за счет перепада давлений, через дроссель возвращается в испаритель.
  • Данный порядок цикличен — повторяется снова и снова.

Теплообменник в тепловых насосах типа «грунт – вода» бывает двух видов:

  1. Горизонтальный коллектор.
  2. Вертикальный коллектор.

тепловые насосы типа грунт – вода

Горизонтальный коллектор

При данной реализации отбирается тепло, накопленное в верхних слоях почвы в результате солнечного излучения, и коллектор представляет собой несколько контуров пластиковых труб, уложенных под слоем грунта.

Для эффективной работы системы, исходя из особенностей грунта, его теплопроводности и геометрии участка, выбирается определенная схема укладки труб – петля, змейка, зигзаг, плоские и винтовые спирали разных форм. Также, эффективность теплообмена увеличивается на влажных грунтах и уменьшается на сухих песчаных участках.

Для отопления дома площадью 70 — 100 м² достаточно уложить приблизительно 200 — 320 м трубопровода несколькими петлями-контурами. Для этого нужен участок площадью примерно 150 — 200 м², то есть в 1,5 — 2 раза больше, чем отапливаемая площадь дома. Дальнейшее использование такого участка над коллектором возможно только в качестве лужайки или цветника.

Главное преимущество использования горизонтального коллектора в связке с тепловым насосом — простота монтажа и то, что при прочих равных условиях работы по монтажу оборудования обойдутся немного дешевле, чем бурение скважин.

Вертикальный коллектор

Грунтовые зонды вертикального коллектора представляют собой систему длинных труб, опускаемых в скважины глубиной 50-200 м.

Пространство в скважине вокруг зонда заполняется буровым раствором или цементно-бетонной смесью для защиты труб от повреждений и улучшения теплопередачи. Для дома площадью 70 — 100 м² понадобится 2 — 3 скважины глубиной около 50 м. Располагать скважины следует не ближе 2 м от стены дома, чтобы не повредить фундамент. Также скважины не должны находиться на одной линии течения подземных вод — иначе эффективность теплового насоса уменьшится.

Для вертикального коллектора не требуется большой участок, а на глубинах от 50 м температура грунта выше, потому эффективность теплообмена при использовании данной системы выше на 15 — 20%, чем у горизонтального коллектора.

Источники

  • https://buildip.ru/teplovoj-nasos-dlya-otopleniya-doma.html
  • https://greensector.ru/inzhenernye-sistemy/vidy-i-princip-raboty-teplovykh-nasosov-dlya-otopleniya-doma.html
  • https://ProStroymaterialy.com/teplovoy-nasos-dlya-otopleniya-doma-ceny-vidy-plyusy-i-minusy/
  • https://otoplenie-expert.com/elementy-otopleniya/teplovoy-nasos.html
  • https://CdelayRemont.ru/obzor-teplovyh-nasosov
  • https://principraboty.ru/teplovoy-nasos-princip-raboty/
  • https://TrubaNet.ru/truby-dlya-otopleniya/teplovojj-nasos-dlya-otopleniya-doma.html
  • https://aqua-rmnt.com/otoplenie/alt_otoplenie/teplovye-nasosy-dlya-otopleniya-doma.html
  • https://VTeple.xyz/teplovoy-nasos-dlya-otopleniya-doma-printsip-rabotyi/
  • https://sovet-ingenera.com/eco-energy/teplovye-nasosy/teplovoj-nasos-svoimi-rukami.html
  • https://SantehnikPortal.ru/otoplenie/teplovoj-nasos.html
  • https://StrojDvor.ru/otoplenie/teplovoy-nasos-2/
  • https://geotermal54.ru/stati/teplovye-nasosy-dlya-otopleniya-doma-vidy-plyusy-i-minusy
  • https://poweredhouse.ru/teplovoj-nasos-dlya-otopleniya-doma-princip-raboty-i-vidy/

Понравилась статья? Поделиться с друзьями:
Bazliter.Ru
Adblock
detector