- Принцип работы основных типов холодильников
- Функционирование абсорбционной техники
- Принцип действия термоэлектрических моделей
- Особенности оборудования на вихревых охладителях
- Виды бытовых холодильников
- Однокамерные холодильники
- Двухкамерные холодильники
- Многокамерные холодильники
- Термодинамические циклы холодильных установок
- Роль холодильника в тепловом двигателе
- Обзор компрессорной техники
- Особенности внутреннего устройства
- Составляющие элементы конструкции
- Последовательность рабочего цикла
- Устройство термостата холодильника
- Воздушные холодильные установки
- Внедрение системы для получения холода
- Абсорбционные холодильные системы
- Диффузионно-абсорбционный чиллер
- Адсорбционные холодильные системы
- Комприссионная холодильная машина
- Пароструйное охлаждение
- Эффект Джоуля-Томсона. Процесс Линде
- Принципиальная структура импульсного трубчатого охладителя
- Термоэлектрический эффект. Элемент Пельтье
- Магнитный холодильник
- Испарительное охлаждение
- Получение холода. Принцип работы холодильника. (видео)
- Как устроен холодильник: принцип и схема работы холодильного оборудования разных типов
- Как устроен холодильник
- Электродвигатель
- Конденсатор
- Испаритель
- Капиллярная трубка
- Фильтр-осушитель
- Докипатель
- Как работает холодильник
- Основные типы охлаждающих систем
- Принцип работы абсорбционных холодильников
- Принцип работы саморазмораживающегося холодильника
- Промышленные холодильники
- Принцип работы инверторного холодильника
- Устройство термостата холодильника
- Холодильник без электричества – правда или вымысел?
Принцип работы основных типов холодильников
Холодильное оборудование используется во многих сферах деятельности. Без него не обойтись в быту и невозможно представить полноценную работу производственных цехов на предприятиях, торговых площадок, заведений общественного питания.
В зависимости от целевого предназначения и области применения различают несколько основных типов приборов: абсорбционные, вихревые, термоэлектрические и компрессорные.
Компрессорный тип наиболее распространен, поэтому его подробно рассмотрим более подробно в следующем разделе. Сейчас же давайте обозначим основные различия между всеми 4-мя конструкциями.
Функционирование абсорбционной техники
В системе установок абсорбционного типа циркулируют два вещества – хладагент и абсорбент. Функции хладагента обычно выполняет аммиак, реже – ацетилен, метанол, фреон, раствор бромистого лития.
Абсорбент представляет собой жидкость, которая обладает достаточной поглотительной способностью. Это может быть серная кислота, вода и др.
Вся работа оборудования построена на принципе абсорбции, подразумевающем поглощение одного вещества другим. Конструкция состоит из нескольких ведущих узлов – испарителя, абсорбера, конденсатора, регулирующих вентилей, генератора, насоса
Элементы системы соединены трубками, с помощью которых образуется единый замкнутый контур. Охлаждение камер происходит за счет тепловой энергии.
Процесс осуществляется следующим образом:
- холодильный агент, растворенный в жидкости, проникает в испаритель;
- из концентрированного раствора выделяются кипящие при 33 градусах пары аммиака, охлаждающие объект;
- вещество переходит в абсорбер, где снова поглощается абсорбентом;
- насос перекачивает раствор в генератор, обогреваемый определенным источником тепла;
- вещество закипает и выделяемые аммиачные пары уходят в конденсатор;
- хладагент остывает и преобразовывается в жидкость;
- рабочее тело проходит сквозь регулирующий вентиль, сжимается и отправляется в испаритель.
В результате аммиак, циркулирующий в замкнутом контуре, забирает тепло из охлаждаемой камеры, поступая в испаритель. И отдает его во внешнюю среду, находясь в конденсаторе. Циклы воспроизводятся безостановочно.
Так как агрегат нельзя выключить, он не очень-то экономен и отличается повышенным расходом энергии. Если такое оборудование выходит из строя, отремонтировать его, скорее всего, не получится.
Зависимость абсорбционных приборов от перепадов напряжения, тока и других параметров электросети минимальна. Компактные размеры позволяют с легкостью устанавливать их на любом удобном участке
В конструкции приспособлений нет громоздких движущихся и трущихся элементов, поэтому у них низкий уровень шума. Устройства актуальны для зданий, электрическая сеть которых подвергается постоянным пиковым нагрузкам, и мест, где отсутствует постоянное электроснабжение.
Принцип абсорбции реализуется в промышленных холодильных установках, небольших холодильниках для автомобилей и офисных помещений. Иногда он встречается в отдельных бытовых моделях, функционирующих на природном газу.
Принцип действия термоэлектрических моделей
Снижение температуры в камере термоэлектрического холодильника достигается с помощью специальной системы, которая выкачивает тепло согласно эффекту Пельтье. Он подразумевает поглощение теплоты в области соединения двух разных проводников в момент прохождения через нее электротока.
Конструкция холодильников состоит из термоэлектрических элементов в форме куба, изготовленных из металлов. Они объединяются одной электрической схемой. Вместе с передвижением тока из одного элемента в другой перемещается и тепло.
Алюминиевая пластина поглощает его из внутреннего отсека, а затем передает кубическим рабочим деталям, которые, в свою очередь, выполняют перенаправление к стабилизатору. Там благодаря вентилятору, оно выбрасывается наружу. По такому принципу работают переносные мини-холодильники и сумки с охлаждающим эффектом.
В большинстве моделей термоэлектрических холодильных приборов при переключении полярности питания можно получать не только холод, но и тепло – до 60 градусов Цельсия. Эта функция применяется для подогрева продуктов
Данное оборудование используется в кемпинге, в сфере обустройства легковых автомобилей, яхт и моторных лодок, часто ставится на дачах и в других местах, где можно обеспечить устройство электропитанием с напряжением в сети 12 В.
В термоэлектрических изделиях предусмотрен специальный аварийный механизм, который отключает их в случае перегрева рабочих деталей или отказа системы вентиляции.
К преимуществам подобного метода работы относятся высокая надежность и довольно низкий уровень шума при эксплуатации приборов. В числе недостатков – дороговизна, чувствительность к внешним температурам.
Особенности оборудования на вихревых охладителях
В приборах этой категории присутствует компрессор. Он сжимает воздух, который в дальнейшем расширяется в установленных блоках вихревых охладителей. Объект охлаждается вследствие резкого расширения сжатого воздуха.
Вихревые приспособления долговечные и безопасные: они не нуждаются в электричестве, не имеют движущихся элементов, не содержат опасных химических составов во внутренней системе конструкции
Широкого распространения метод вихревых охладителей не получил, а ограничился лишь тестовыми образцами. Это объясняется большим расходом воздуха, очень шумной работой и относительно низкой холодопроизводительностью. Иногда устройства применяют на промышленных предприятиях.
Виды бытовых холодильников
По своему количеству камер холодильники делятся на:
- Однокамерные;
- Двухкамерные;
- Многокамерные (три и более камер).
Также холодильник может иметь разное количество компрессоров. В обычных аппаратах используется один, но в некоторых моделях бывают два компрессора. От их количества и мощности зависит потребление электроэнергии холодильником.
Однокамерные холодильники
Это наиболее простой аппарат. Чаще в нем только одна камера для хранения продуктов, в которой поддерживается постоянная температура. Но существуют варианты с двумя отделениями – обычным и морозилкой.
Однокамерный холодильник имеет один испаритель. Более низкая температура в морозильной камере обеспечивается тем, что фреон сначала проходит через нее и немного нагревается. После этого он попадает в основной отсек.
Двухкамерные холодильники
В таких агрегатах есть обычная камера, отделенная от морозильной. Их отличие от однокамерных в том, что в каждом отсеке установлен свой испаритель. Это позволяет точно регулировать и поддерживать температурный режим. Двухкамерный холодильник может быть оснащен одним или двумя компрессорами.
Многокамерные холодильники
Такие модели довольно дороги и могут быть трех-, четырех- и пятикамерными. Как и в двухкамерных, в них есть морозильный отсек с минусовой температурой и обычный. Но в дополнение к ним есть отдельные отделения.
В многокамерных холодильниках есть нулевой отсек или зона свежести. В них поддерживается отдельный температурный режим. Чаще всего это 0…+1 градуса. В трехкамерных такой отсек один, в четырехкамерных – два, в пятикамерных – три.
Каждая зона свежести предназначена для хранения определенных продуктов. Например:
- Рыбы;
- Овощей и фруктов;
- Мясных продуктов.
Термодинамические циклы холодильных установок
Перенос теплоты от менее нагретого к более нагретому источнику становится возможным в случае организации какого-либо компенсирующего процесса. В связи с этим циклы холодильных установок всегда реализуются в результате затрат энергии.
Чтобы отводимая от «холодного» источника теплота могла быть отдана «горячему» источнику (обычно — окружающему воздуху), необходимо поднять температуру рабочего тела выше температуры окружающей среды. Это достигается быстрым (адиабатным) сжатием рабочего тела с затратой работы или подводом к нему теплоты извне.
В обратных циклах количество отводимой от рабочего тела теплоты всегда больше количества подводимой теплоты, а суммарная работа сжатия больше суммарной работы расширения. Благодаря этому установки, работающие по подобным циклам, являются потребителями энергии. Такие идеальные термодинамические циклы холодильных установок уже рассмотрены выше в пункте 10 темы 3. Холодильные установки различаются применяемым рабочим телом и принципом действия. Передача теплоты от «холодного» источника «горячему» может осуществляться за счет затраты работы или же затрат теплоты.
Роль холодильника в тепловом двигателе
Тепловой двигатель – агрегат, преобразующий тепловую энергию в механическую. Тепло он получает из внешней среды или использует образующееся вследствие сгорания топлива в камерах двигателей внутреннего сгорания. Часто возникает логический вопрос: зачем в тепловом двигателе нужен холодильник, какова его роль?
Работа тепловым двигателем совершается при разности давлений с обеих сторон поршня. Оно создаётся путём повышения температуры внутри агрегата на сотни градусов. Газ при этом совершает работу – расширяется, двигая поршень. Холодильник этот газ охлаждает, чтобы работа на сжатие была меньше, чем на декомпрессию.
Принцип работы холодильной машины основывается на охлаждении – отборе тепла у рабочей машины посредством кипения жидкости.
Поделитесь в социальных сетях: 7 октября 2021, 18:54 Физика 0.00% 00
Обзор компрессорной техники
Компрессорные холодильники – наиболее распространенный тип оборудования в быту. Они есть почти в каждом доме — потребляют не слишком много энергоресурсов и безопасны в эксплуатации. Самые удачные модели надежных производителей служат своим владельцам более 10 лет. Рассмотрим их строение и принципы, по которым они работают.
Особенности внутреннего устройства
Классический бытовой холодильник – это вертикально ориентированный шкаф, оснащенный одной или двумя дверцами. Его корпус изготавливается из жесткой листовой стали толщиной около 0,6 мм либо прочного пластика, облегчающего вес несущей конструкции.
Для качественной герметизации изделия применяют пасту с высоким содержанием хлорвиниловой смолы. Поверхность грунтуется и покрывается качественной эмалью из краскопультов. В производстве внутренних металлических отделений задействуют так называемый способ штамповки, пластиковые шкафы делают по методу вакуумного формования.
Двери прибора состоят из стальных листов. По краям вставляется плотный резиновый уплотнитель, не пропускающий внешний воздух. В некоторые модификации встраивают магнитные затворы
Между внутренней и наружной стенкой изделия обязательно прокладывают слой теплоизоляции, который защищает камеру от тепла, пытающегося проникнуть из окружающей среды, и предотвращают потерю образующегося внутри холода. Для этих целей хорошо подходит минеральный или стеклянный войлок, пенополистирол, пенополиуретан.
Внутреннее пространство традиционно подразделяется на две функциональные зоны: холодильную и морозильную.
По форме компоновки различают:
- одно-;
- двух-;
- многокамерные приборы.
В отдельный вид выделены агрегаты Side-by-Side, включающие две, три или четыре камеры.
Однокамерные агрегаты снабжены одной дверью. В верхней части оборудования размещен морозильный отсек с собственной дверцей с откидным или открывающимся механизмом, в нижней – холодильный отдел с регулируемыми по высоте полками.
В камерах устанавливается осветительная аппаратура со светодиодом или обычной лампой накаливания для того, чтобы видеть, что, собственно, в холодильнике лежит.
Приборы, сделанные по типу «бок о бок», гораздо объемнее и шире собратьев. Оба отсека в них занимают пространство по всей высоте оборудования. Они расположены параллельно друг другу
В двухкамерных агрегатах внутренние шкафы изолированы и отделены каждый своей дверью. Расположение отделов в них может быть европейским и азиатским. Первый вариант предполагает нижнюю компоновку морозильной камеры, второй – верхнюю.
Составляющие элементы конструкции
Холодильные установки компрессорного типа не производят холод. Они охлаждают объект, вбирая внутреннее тепло и переправляя его наружу.
Процедура образования холода протекает с участием следующих узлов:
- охладительный агент;
- конденсатор;
- испарительный радиатор;
- компрессорный аппарат;
- терморегулирующий вентиль.
В роли хладагента, которым заполняют систему холодильника, выступают различные марки фреона – смеси газов с высоким уровнем текучести и довольно низкими показателями температуры кипения/испарения. Смесь передвигается по замкнутому контуру, перенося тепло по различным участкам цикла.
В большинстве случаев в качестве рабочего элемента для домашних холодильных машин производители применяют Фреон 12. Этот бесцветный газ с едва ощутимым специфическим запахом не ядовит для человека и не влияет на вкус и свойства продуктов, хранящихся в камерах
Компрессор – центральная часть конструкции любого холодильника. Это инверторный или линейный агрегат, провоцирующий принудительную циркуляцию газа в системе, нагнетая давление. Проще говоря, компрессор холодильника сжимает пары фреона и заставляет их двигаться в нужном направлении.
Техника может быть оснащена одним или двумя компрессорами. Вибрации, возникающие при работе, поглощает внешняя либо внутренняя подвеска. В моделях с парой компрессоров за каждую камеру отвечает отдельное устройство.
Классификацией компрессоров предусмотрено два подтипа:
- Динамический. Вынуждает хладагент передвигаться за счет силы движения лопастей центробежного или осевого вентилятора. Имеет простое строение, но из-за низкого КПД и быстрого износа под действием крутящего момента в бытовом оборудовании используется редко.
- Объемный. Сжимает рабочее тело при помощи специального механического устройства, которое запускается электродвигателем. Бывает поршневым и роторным. В основном в холодильниках устанавливаются именно такие компрессоры.
Поршневой аппарат представлен в виде электромотора с вертикальным валом, заключенного в цельный металлический кожух. Когда пусковое реле подсоединяет питание, он активизирует коленчатый вал, а поршень, закрепленный на нем, начинает двигаться.
К работе подключается система открывающихся и закрывающихся клапанов. В итоге фреоновые пары вытягиваются из испарителя и нагнетаются в конденсатор.
При поломках поршневого компрессора ремонт возможен только при условии применения специализированного профессионального оборудования. Любая разборка в бытовой обстановке чревата потерей герметичности и невозможностью дальнейшей эксплуатации
В роторных механизмах необходимое давление поддерживается двумя роторами, движущимися навстречу друг другу. Фреон попадает в верхний карман, расположенный в начале валов, сжимается и выходит через нижнее отверстие небольшого диаметра. Для уменьшения трения в пространство между валами вводится масло.
Конденсаторы выполняются в виде решетки-змеевика, которую закрепляют на задней либо боковой стенке оборудования.
Они имеют разную конструкцию, но всегда отвечают за одну задачу: охлаждение горячих газовых паров до заданных значений температуры путем конденсации вещества и рассеивания тепла в помещении. Бывают щитовыми или ребристо-трубчатыми.
Испаритель состоит из тонкого алюминиевого трубопровода, спаянных стальных пластинок. Он контактирует с внутренними отсеками холодильника, эффективно отводит поглощенное тепло из прибора и существенно понижает температуру в шкафах
Терморегулирующий вентиль нужен для того, чтобы поддерживать давление рабочего тела на определенном уровне. Крупные узлы агрегата связывают между собой системой трубок, образующих герметичное замкнутое кольцо.
Последовательность рабочего цикла
Оптимальная температура для долговременного хранения провизии в компрессионных приборах создается в ходе рабочих циклов, осуществляющихся один за другим.
Протекают они следующим образом:
- при подключении аппарата к электросети запускается компрессор, сжимающий пары фреона, синхронно повышая их давление и температуру;
- под силой действия избыточного давления горячее рабочее тело, находящееся в газовом агрегатном состоянии, попадает в емкость конденсатора;
- передвигаясь по длинной металлической трубке, пар выбрасывает накопленное тепло во внешнюю среду, плавно остывает до комнатных температурных значений и превращается в жидкость;
- жидкое рабочее тело проходит через фильтр-осушитель, поглощающий лишнюю влагу;
- хладагент проникает сквозь узкую капиллярную трубку, на выходе из которой снижается его давление;
- вещество остывает и преобразовывается в газ;
- охлажденный пар добирается до испарителя и, проходя по его каналам, забирает тепло из внутренних отделений холодильного агрегата;
- температура фреона повышается, и он опять отправляется в компрессор.
Если говорить простыми словами о том, как работает компрессорный холодильник, то процесс выглядит так: компрессор перегоняет хладагент по замкнутому кругу. Фреон, в свою очередь, меняет агрегатное состояние благодаря специальным приспособлениям, собирает тепло внутри и переносит его наружу.
Рабочий цикл в системе повторяется до тех пор, пока не будут достигнуты температурные значения, заданные системными программами, и возобновляется вновь, когда фиксируется их повышение
После охлаждения до нужных параметров терморегулятор останавливает мотор, размыкая электрическую цепь.
Когда температура в камерах начинает повышаться, контакты замыкаются вновь, а электродвигатель компрессора приводится в действие защитно-пусковым реле. Именно поэтому в процессе работы холодильника постоянно то появляется, то опять затихает гул мотора.
Устройство термостата холодильника
Терморегулятор предназначен для поддержания заданной температуры внутри системы. Устройство герметично впаяно с одного конца капиллярной трубки. Другим концом капиллярная трубка подсоединяется к испарителю.
Основным элементом устройства терморегулятора любого холодильника является термореле. Конструкция термореле состоит сильфона и силового рычага.
Устройство терморегулятора
Сильфоном называют гофрированную пружину, в кольцах которой находится фреон. В зависимости от температуры фреона, пружина сжимается или растягивается. При понижении температуры хладагента пружина сжимается.
А знаете ли Вы, что современные бытовые холодильники используют фреон R600a на основе изобутана. Этот хладагент не разрушает озоновый слой планеты и не вызывает парниковый эффект.
Под воздействием сжатия рычаг замыкает контакты и подключает компрессор к работе. При повышении температуры происходит растягивание пружины. Силовой рычаг размыкает цепь и мотор выключается.
Воздушные холодильные установки
В воздушных холодильных установках в качестве рабочего тела используется воздух, а передача теплоты от «холодного» источника «горячему» осуществляется за счет затраты механической энергии. Необходимое для охлаждения холодильной камеры понижение температуры воздуха достигается в этих установках в результате быстрого его расширения, при котором время на теплообмен ограничено, и работа в основном совершается за счет внутренней энергии, в связи, с чем температура рабочего тела падает. Схема воздушной холодильной установки показана на рис 7.14
Рис. 14. Схема воздушной холодильной установки: ХК — холодильная камера; К — компрессор; ТО — теплообменник; Д — расширительный цилиндр (детандер)
Температура воздуха, поступающего из холодильной камеры ХК в цилиндр компрессора К, поднимается в результате адиабатного сжатия (процесс 1 — 2) выше температуры Т3 окружающей среды. При протекании воздуха по трубкам теплообменника ТО его температура при неизменном давлении понижается — теоретически до температуры окружающей среды Тз. При этом воздух отдает в окружающую среду теплоту q (Дж/кг). В результате удельный объем воздуха достигает минимального значения v3, и воздух перетекает в цилиндр расширительного цилиндра — детандера Д. В детандере, вследствие адиабатного расширения (процесс 3-4) с совершением полезной работы, эквивалентной затемненной площади 3-5-6-4-3, температура воздуха опускается ниже температуры охлаждаемых в холодильной камере предметов. Охлажденный подобным образом воздух поступает в холодильную камеру. В результате теплообмена с охлаждаемыми предметами температура воздуха при постоянном давлении (изобара 4-1) повышается до своего исходного значения (точка 1). При этом от охлаждаемых предметов к воздуху подводится теплота q2 (Дж/кг). Величина q 2, называемая хладопроизводительностью, представляет собой количество теплоты, получаемой 1 кг рабочего тела от охлаждаемых предметов.
Внедрение системы для получения холода
Холод, «генерируемый» чиллером, используется для технологических процессов, для кондиционирования воздуха, для производства льда (катки), консервации и охлаждения продуктов. Тепло может быть поглощено прямо или косвенно. В случае непрямого получения холода используется охлаждающая жидкость (холодная вода, рассол, смеси с гликолем, чтобы избежать замерзания в трубах).
Конструкция простого теплообменника
Промежуточная жидкость охлаждается испаряющимся хладагентом в первом теплообменнике и поглощает тепло охлаждаемой среды во втором теплообменнике. При непосредственном использовании рабочего вещества применяется теплообменник с испаряющимся хладагентом с одной стороны и охлаждаемое вещество с другой.
Абсорбционные холодильные системы
Абсорбционные системы относятся к классу теплоиспользующих машин, в которых охлаждение достигается путём слияния прямого цикла (преобразование тепла в работу) и обратного цикла (получение холода с затратой работы). Поэтому участвуют 3 источника тепла: окружающая среда, нагреватель и охлаждаемый объект. На рисунке ниже приведена схема простейшего абсорбционного холодильного аппарата, работающего на бинарных типах.
Абсорбционные чиллеры имеет дополнительный растворитель и холодильный контур. Рабочая жидкость состоит из двух компонентов: растворителя и хладагента. Хладагент должен быть полностью растворим в растворителе. Распространены абсорбционные чиллеры с водой в качестве хладагента и водным раствором бромида лития (LiBr) в качестве растворителя.
Температуры испарения воды примерно до 3° C достигаются с помощью вакуума. Абсорбционные чиллеры, которые используют аммиак (NH3) в качестве хладагента и воду в качестве растворителя, достигают более низких температурных уровней. Температуры испарения -70° C достигаются в крупных холодильных системах с абсорбцией аммиака. В случае абсорбционных чиллеров есть дополнительная возможность по добавлению абсорбционного тепла.
Принцип работы абсорбционной установки
Диффузионно-абсорбционный чиллер
Диффузионно-абсорбционный чиллер работает как охладитель поглощения. Изменение давления, однако, реализуется как изменение парциального давления. Для этого требуется третий компонент рабочей жидкости — инертный газ. Преимущество в том, что корпус под давлением герметично закрыт и не требует съёмных уплотнений, а устройство работает бесшумно. Технология используется, например, в кемпинговых и гостиничных холодильниках.
Адсорбционные холодильные системы
Адсорбционные системы работают с фиксированным растворителем (адсорбентом), при котором хладагент адсорбируется или десорбируется. Тепло добавляется в процесс во время десорбции и отводится во время адсорбции. Поскольку адсорбент не может циркулировать в цикле, процесс осуществляется только с перерывами.
Поэтому используются две камеры с адсорбентом, в которых адсорбция и десорбция проходят параллельно в течение одного рабочего цикла (от 6 до 10 минут). По окончании рабочего цикла происходит обмен теплом и тепловыделение в двух камерах (переключение, прибл. 1 мин.). Затем адсорбция и десорбция начинаются снова параллельно. Это обеспечивает практически равномерное охлаждение.
Комприссионная холодильная машина
В компрессорном устройстве рабочее тело протекает по контуру потока, попеременно поглощая тепло при низкой температуре и выделяя (больше) тепло при более высокой температуре. Перекачивание, то есть введение механической работы, необходимо для поддержания потока и, следовательно, процесса.
Схема работы холодильника: 1 — конденсатор, 2 — терморегулирующий вентиль, 3 — испаритель, 4 — компрессор
Такие машины работают либо, чередуя испарение и конденсацию среды (хладагента), либо с газообразной средой (в основном с воздухом). Первый тип широко распространён и используется, например, в бытовых холодильниках, морозильниках, системах дозирования, кондиционерах, на катках, пищевых заводах и в химической промышленности.
Для работы машины согласно 2 закону термодинамики, энергия подаётся извне в виде механической работы, потому что только тогда тепло переносится из точки с низкой температурой в точку с высоким термозначением.
Пар из компрессорной машины всасываются и сжимается. Рабочее вещество конденсируется в конденсаторе, отдавая наружу теплоту. Жидкость направляется в дроссельное устройство, расширяется, давление падает, рабочее вещество охлаждается и испаряется. Процесс испарения продолжается в испарителе, хладагент забирает теплоту из холодной комнаты. Компрессор всасывает испарённый и сухой (или перегретый) пар, и цикл повторяется.
Схема (а) и цикл (б) машины для холода со сжатием в компрессоре сухого пара
Пароструйное охлаждение
Охлаждения пара струи является тепловой системой для получения холода, в которой используется водяной пар в качестве хладагента и солевой раствор. Расширение струи водяного пара создаёт вакуум, и водяной пар отсасывается из испарителя. Испарение охлаждает резервуар для воды в испарителе, а вода используется в качестве охлаждающей жидкости.
Эффект Джоуля-Томсона. Процесс Линде
Для обеспечения охлаждения температуру газа (например, воздуха, гелия), который не конденсируется в рабочей зоне, снижают путём дросселирования. При использовании эффекта Джоуля-Томсона охлаждение составляет 0,4 К на перепад давления в дросселе. Хотя этот эффект мал, но его используют для достижения низких температур, близких к абсолютному нулю.
Системы часто выполняются в несколько этапов. Оборудование системы Джоуля-Томсона аналогично оборудованию компрессорного холодильника, но теплообменники не сконструированы как конденсаторы или испарители. Для оптимизации энергопотребления необходимо предварительно охладить газ в рекуперативном (противоточном) теплообменнике, чтобы газ возвращался из охладителя перед расширительным клапаном (дросселем).
В 1895 году Карл Линде использовал такую систему сжижения воздуха и сжижал большие количества (1 ведро/ч) воздуха. С тех пор процесс Джоуля-Томсона для сжижения воздуха стал называться процессом Линде.
Однако для охлаждения с использованием процесса Джоуля-Томсона крайне важно, чтобы начальный тепловой уровень был ниже температуры инверсии соответствующего газа. Это примерно + 450° С для воздуха, -80° С для водорода и -239° С для гелия. Если газ выходит ниже температуры инверсии, то остывает, а если выходит выше температурки инверсии, то нагревается. Для того чтобы иметь возможность охлаждать газ с использованием процесса Линде, начальный тепловой показатель должен быть ниже температурки инверсии.
Принципиальная схема установки с циклом Линде приведена на рисунке ниже. Рабочее тело — сжиженный воздух. Воздух, очищенный и осушенный от углекислоты, засасывается компрессором 1 и в идеале изотермически сжимается до давления 10—20 МПа. В реальном случае сжатие происходит по политропе (температура повышается). Пройдя теплообменник 2, воздух охлаждается окружающим объёмом до начальной температуры.
Затем воздух проходит теплообменник 3 (основной), дроссель 4, сборник жидкости 5, опять теплообменник 3 и поступает в компрессор. В основном теплообменнике навстречу друг другу идёт «тёплый» поток воздуха (сжатие в компрессоре) и «холодный» поток (расширение в дросселе). Температурный уровень холода понижается без передачи тепла внешним источникам. Происходит внутренний теплообмен.
Схема установки с циклом Линде
Принципиальная структура импульсного трубчатого охладителя
Импульсная трубка-холодильник является холодильной машиной, принцип действия которой соответствует принципу работы двигателя Стирлинга, но которой не требуется никаких механических подвижных частей. Это позволяет создавать компактные охлаждающие головки, а минимальный температурный уровень не ограничивается механическим теплом трения деталей. Самое низкое значение до сих пор было 1,3 K (–272° C).
Импульсная трубка-холодильник
Термоэлектрический эффект. Элемент Пельтье
Элемент Пельтье также можно использовать для охлаждения (или нагрева), который работает от электричества и не требует хладагента. Однако при большой разнице температур (50-70 К) охлаждающая способность падает до нуля. Для высоких перепадов температуры используются пирамидальные многоступенчатые структуры.
Эта технология используется для стабилизации температуры полупроводниковых лазеров и датчиков, в автомобильных кулерах, в термоциклерах и для охлаждения датчиков изображения в камерах от инфракрасного до ультрафиолетового излучения.
Магнитный холодильник
Схема работы магнитного холодильника
Другой метод получения холода основан на магнитных свойствах определенных веществ. При намагничивании некоторые вещества выделяют тепло, которое называют магнитокалорическими веществами. При магнитном охлаждении вещество попадает в магнитное поле, где оно нагревается. Тепло рассеивается с помощью охлаждающей жидкости.
Материал, возвращённый к температуре окружающей среды, теперь покидает магнитное поле и размагничивается в области, подлежащей охлаждению. Материал поглощает тепло при размагничивании. Механическая работа выполняется снаружи, чтобы удалить намагниченный материал из магнитного поля. Такие системы для холода эффективны, чем системы, работающие с паром, но более дорогие.
Испарительное охлаждение
При испарительном охлаждении энергия в виде тепла (энтальпия испарения) извлекается из среды (например, воздуха или поверхности) путём испарения воды. Испарительное охлаждение также часто называют адиабатическим охлаждением в области технологии подачи, поскольку теоретически физический процесс представляет собой изоэнтальпическое преобразование из чувствительного в скрытое тепло.
Это процесс теплопередачи от высокой к низкой температуре, который усиливается фазовым переходом (вода в пар) и, таким образом, представляет собой самодействующий термодинамический цикл «по часовой стрелке». Следовательно, кроме транспортировки воздуха и воды, не требуется никакой дополнительной механической, электрической или тепловой энергии.
Испарительное охлаждение является старейшим методом охлаждения. Испарение воды в воздухе создаёт охлаждающий потенциал, который ниже температуры окружающей среды. Достижимая пониженная температура зависит от климатических условий воздуха. Во многих случаях этого достаточно для кондиционирования воздуха в помещении. В некоторых технологических системах, таких как влажная градирня, охлаждающий эффект также увеличивается в случае воздушного охлаждения.
Возможная степень охлаждения зависит от температуры и влажности окружающего воздуха, то есть относительной влажности. Если относительная влажность воздуха близка к 100%, то есть воздух насыщен или даже перенасыщен (как в тумане), эффект не определяется. Давление насыщенного пара воды в воздухе слишком высокое. Однако, чем ниже относительная влажность, тем выше вероятность дальнейшего впитывания влаги, и тем больше воды может испаряться и снижать температуру воздуха.
Области состояний влажного воздуха в i—d-диаграмме
Все изменения в состоянии воздуха можно увидеть на i—d-диаграмме (абсолютная влажность в зависимости от температуры). Общее содержание энергии в воздухе дано в кДж/ кг. Поскольку во время испарительного охлаждения (адиабатическое) содержание энергии не меняется, изменение состояния происходит сверху вниз. При относительной влажности 100% достигнете линии насыщения.
Испарительное охлаждение является критическим физическим процессом, стоящим за охлаждающим эффектом потоотделения (или, например, смачиваемой кожи на руке, подвергшейся воздействию ветра). Этот тип охлаждения также использовался на ранних этапах истории техники, поскольку в древние времена было известно, что глиняные сосуды увлажняются и позволяют испаряться через поверхность с открытыми порами, чтобы охлаждать содержимое (например, охладитель глинистого масла)
Получение холода. Принцип работы холодильника. (видео)
Как устроен холодильник: принцип и схема работы холодильного оборудования разных типов
Домашний уют современного человека невозможно представить без холодильника. Он предназначен для длительного хранения продуктов. По подсчетам ученых, каждый член семьи открывает дверцу до 40 раз в сутки. Мы заглядываем вовнутрь даже не задумываясь, как работает наш холодильник.
В нашей статье мы подробно рассмотрим устройство и принцип действия различных холодильников.
Как устроен холодильник
Любой современный холодильник состоит из следующих основных агрегатов:
- Двигатель.
- Конденсатор.
- Испаритель.
- Капиллярная трубка.
- Осушительный фильтр.
- Докипатель.
Схема работы холодильника
Электродвигатель
Двигатель является основным узлом бытового прибора. Предназначен для циркуляции охлаждающей жидкости (фреона) по трубкам.
Двигатель состоит из двух агрегатов:
- электромотор;
- компрессор.
Электромотор преобразует электрический ток в механическую энергию. Агрегат состоит из двух частей – ротора и статора.
Корпус статора устроен из нескольких медных катушек. Ротор имеет вид стального вала. Ротор соединен с поршневой системой двигателя.
При подключении двигателя к сети питания в катушках возникает электромагнитная индукция. Она является причиной возникновения крутящего момента. Центробежная сила приводит ротор во вращательное движение.
А знаете ли Вы, что на долю холодильника приходится 10 % всей потребленной электроэнергии. Открытая дверца прибора увеличивает потребление электричества в несколько раз.
При вращении ротора двигателя происходит линейное перемещение поршня. Передняя стенка поршня сжимает и разряжает рабочую жидкость до рабочего состояния.
Положение двигателя холодильника
В современных охлаждающих установках электродвигатель находится внутри компрессора. Такое расположение преграждает газу путь для самопроизвольной утечки.
Для уменьшения вибраций двигатель находится на пружинистой металлической подвеске. Пружина может находится снаружи или внутри устройства. В современных агрегатах пружина находится внутри корпуса двигателя. Это позволяет эффективно гасить вибрации при работе аппарата.
Конденсатор
Представляет собой змеевидный трубопровод диаметром до 5 миллиметров. Предназначен для отвода тепла от рабочей жидкости в окружающую среду. Конденсатор располагается на задней наружной поверхности прибора.
Испаритель
Представляет систему тонких трубок. Предназначен для испарения рабочей жидкости и охлаждения окружающего пространства. Располагается внутри или снаружи морозильника.
Устройство компрессора
Капиллярная трубка
Предназначена для снижения давления газа. Имеет диаметр от 1,5 до 3 миллиметров. Расположена на участке между испарителем и конденсатором.
Фильтр-осушитель
Предназначен для очистки рабочего газа от влаги. Имеет вид медной трубки диаметром от 10 до 20 мм. Концы трубки вытянуты и герметично впаяны с капиллярную трубку и конденсатор.
Внимание! Фильтр-осушитель имеет односторонний принцип работы. Устройство не предназначено для работы на обратном режиме. При неправильной установке фильтра возможен выход установки из строя.
Внутри трубки находится цеолит – минеральный наполнитель с высокопористой структурой. На обоих концах трубки установлены заграждающие сетки.
Фильтр-осушитель
Со стороны конденсатора установлена металлическая сеточка с размерами ячеек до 2 мм. Со стороны капиллярной трубки установлена синтетическая сетка. Размеры ячеек такой сетки составляют десятые доли миллиметра.
Докипатель
Представляет собой металлическую емкость. Устанавливается на участке между испарителем и входом компрессора. Предназначен для доведения фреона до кипения с последующим испарением.
Служит защитой двигателя от попадания жидкости. Попадание рабочей жидкости может привести к выходу его из строя.
Как работает холодильник
Главный принцип работы любого холодильника основан на выполнении двух рабочих операций:
- Вывод тепловой энергии из устройства в окружающее пространство.
- Концентрация холода внутри корпуса прибора.
Для отбора тепла применяется хладагент под названием фреон. Это газообразное вещество на основе этана, фтора и хлора. Фреон обладает уникальной возможностью переходить из газообразного состояния в жидкое и обратно. Переход из одного состояние в другое происходит при изменении давления.
Работа системы охлаждения заключается в следующем. Компрессор засасывает фреон вовнутрь. Внутри устройства работает электромотор. Двигатель приводит в движение поршень. При движении поршня происходит сжатие газа.
Принципиальная схема работы холодильника
Процесс сжатия газа делится на два этапа. На первом этапе происходит возвратное движение поршня. При смещении поршня открывается впускной клапан. Через открытое отверстие фреон поступает в газовую камеру.
На втором этапе поршень смещается в обратном направлении. При обратном движении поршень сжимает газ. Сжатый фреон давит на пластину выходного клапана. В камере резко повышается давление. При увеличении давления происходит нагрев газа до температуры 100° C. Выпускной клапан открывается и выпускает газ наружу.
Нагретый фреон из камеры поступает во внешний теплообменник (конденсатор). По пути следования по конденсатору фреон отдает тепло наружу. В конечной точке конденсатора температура газа уменьшается до 55° C.
А знаете ли Вы, что самые первые холодильники в качестве хладагента использовали диоксид серы? Такие приборы были очень опасны по причине высокой вероятности разгерметизации системы.
В процессе теплопередачи происходит конденсация газа. Фреон из газообразного состояния превращается в жидкость.
Из конденсатора жидкий фреон поступает в фильтр-осушитель. Здесь происходит поглощение влаги специальным сорбентом. Из фильтра газообразный фреон поступает в капиллярную трубку.
Капиллярная трубка играет роль своеобразной пробки (препятствия). На входе в трубку давление газа понижается. Хладагент превращается в жидкость. Из капиллярной трубки фреон поступает на испаритель. При падении давления происходит испарение фреона. Вместе с давлением падает и температура газа. В момент поступления в испаритель температура фреона составляет – 23° С.
Фреон проходит по теплообменнику внутри холодильной камеры. Охлажденный газ снимает тепло с внутренней поверхности трубок испарителя. При отдаче тепла происходит охлаждение внутреннего пространства холодильной камеры.
После испарителя фреон засасывается в компрессор. Замкнутый цикл повторяется.
Основные типы охлаждающих систем
По принципу действия различают следующие типы холодильников:
- компрессионные;
- адсорбционные;
- термоэлектрические;
- пароэжекторные.
В компрессионных агрегатах движение хладагента осуществляется за счет изменения давления в системе. Регулирование давления рабочей жидкости осуществляет компрессор. Охладительные системы с компрессором являются самым распространенным типом охлаждающих устройств.
В абсорбционных установках движение хладагента происходит за счет его нагревания от нагревательной системы. В качестве рабочей смеси используется аммиак. Недостатком системы является высокая опасность и сложность обслуживания. Данный тип бытовых приборов является устаревшим и на сегодняшний день снят с производства.
А знаете ли Вы, что самый первый холодильник был выпущен американской компанией General Electric в далеком 1911 году. Устройство было выполнено из дерева. В качестве хладагента использовался диоксид серы.
Главный принцип действия термоэлектрических холодильников основан на поглощении тепла при взаимодействии двух проводников во время прохождения по ним электрического тока. Данный принцип известен как Эффект Пельтье. Достоинством аппарата является высокая надежность и долговечность. Недостатком является высокая стоимость полупроводниковых систем.
В пароэжекторных установках используется вода. Роль двигательной установки выполняет эжектор. Рабочая жидкость попадает в испаритель. Здесь происходит вскипание жидкости с образованием водяного пара. При теплообразовании температура воды резко снижается.
Охлажденная вода используется для охлаждения продуктов. Водяной пар отводится эжектором на конденсатор. В конденсаторе водяной пар охлаждается, превращается в конденсат и вновь поступает на испаритель. Достоинством таких установок является их простота устройства, безопасность, экологичность. Недостатком пароэжекторной системы является значительный расход воды и электроэнергии на ее нагрев.
Принцип работы абсорбционных холодильников
Работа абсорбционных устройств основана на циркуляции и испарении жидкого хладагента. В качестве хладагента применяется аммиак. Роль абсорбента (поглотителя) выполняет аммиачный раствор на водной основе.
Схема работы абсорбционного устройства
В охлаждающую систему аппарата добавляются водород и хромат натрия. Водород предназначен для регулирования давления системы. Хромат натрия защищает внутренние стенки трубок от коррозии.
А знаете ли Вы, что старые советские холодильники в качестве охлаждающей смеси используют фреон R12 на основе хлора. Главным недостатком является его разрушительное действие на озоновый слой Земли.
При подключении к сети питания в генераторе-кипятильнике происходит нагрев рабочей жидкости. Рабочей смесью выступает водный раствор аммиака. Раствор аммиака находится в специальном резервуаре.
Нагрев хладагента приводит к испарению аммиака. Пары аммиака поступают в конденсатор. Здесь аммиак конденсируется и превращается в жидкость.
Сжиженный аммиак поступает в испаритель. Отсюда жидкий аммиак смешивается с водородом. Разность давлений двух веществ приводит к испарению аммиака. Процесс испарения сопровождается выделением тепла и охлаждением аммиака до -4° С. Вместе с аммиаком происходит охлаждение испарителя.
Охлажденный испаритель забирает тепло окружающего пространства. После испарения аммиак поступает в адсорбер. В адсорбере находится чистая вода. Здесь аммиак смешивается с водой. Аммиачный раствор поступает в резервуар. Раствор аммиака из резервуара поступает в генератор-кипятильник и замкнутый цикл повторяется.
В качестве заменителя аммиака могут использоваться водные растворы ацетона, бромистого лития, ацетилена.
Достоинством абсорбционных приборов является бесшумность работы агрегатов.
Принцип работы саморазмораживающегося холодильника
Процесс разморозки в установках с саморазмораживающейся системой происходит автоматически.
Существуют два типа саморазмораживающихся систем:
- Капельная.
- Ветреная (No frost).
В аппаратах с капельной системой испаритель находится на задней стенке аппарата. Во время работы аппарата на задней стенке образуется иней. При оттаивании иней стекает по специальным желобам в нижнюю часть прибора. Нагретый до высокой температуры компрессор испаряет жидкость.
В установках с ветряной системой холодный воздух от испарителя на задней стенке задувается специальным вентилятором внутрь корпуса. Во время цикла оттаивания иней стекает по желобкам в специальное отверстие.
Промышленные холодильники
Промышленные аппараты отличаются от бытовых устройств мощностью установки и размерами охлаждающих камер. Мощность двигателя оборудования достигает нескольких десятков киловатт. Рабочая температура морозильных камер находится в диапазоне от + 5 до – 50° C.
А знаете ли Вы, что самый большой промышленный холодильник занимает 24 км2 площади. Находится этого гигант в Женеве (Швейцария) и служит для научных целей при работе адронного коллайдера.
Промышленные установки предназначены для охлаждения и глубокой заморозки большого количества продуктов. Объем морозильных камер составляет от 5 до 5000 тонн. Используются на заготовительных и перерабатывающих предприятиях.
Принцип работы инверторного холодильника
Инверторные компрессоры предназначены для аккумуляции и преобразования постоянного тока в переменный ток с напряжением 220 В. Принцип работы основан на возможности плавного регулирования оборотов вала двигателя.
Устройство инверторного двигателя
При включении инвертор быстро набирает необходимое число оборотов для создания необходимой температуры внутри корпуса. На момент достижения заданных параметров устройство переходит в режим ожидания. Как только температура внутри корпуса повышается, срабатывает датчик температуры и скорость оборотов двигателя увеличивается.
Устройство термостата холодильника
Терморегулятор предназначен для поддержания заданной температуры внутри системы. Устройство герметично впаяно с одного конца капиллярной трубки. Другим концом капиллярная трубка подсоединяется к испарителю.
Основным элементом устройства терморегулятора любого холодильника является термореле. Конструкция термореле состоит сильфона и силового рычага.
Устройство терморегулятора
Сильфоном называют гофрированную пружину, в кольцах которой находится фреон. В зависимости от температуры фреона, пружина сжимается или растягивается. При понижении температуры хладагента пружина сжимается.
А знаете ли Вы, что современные бытовые холодильники используют фреон R600a на основе изобутана. Этот хладагент не разрушает озоновый слой планеты и не вызывает парниковый эффект.
Под воздействием сжатия рычаг замыкает контакты и подключает компрессор к работе. При повышении температуры происходит растягивание пружины. Силовой рычаг размыкает цепь и мотор выключается.
Холодильник без электричества – правда или вымысел?
Житель Нигерии Мохаммед Ба Абба в 2003 году получил патент на холодильник без электричества. Устройство представляет собой глиняные горшки разной величины. Сосуды сложены друг в друга по принципу русской «матрешки».
Холодильник без электричества
Пространство между горшками заполняют влажным песком. В качестве крышки используется влажная ткань. Под действием жаркого воздуха влага из песка испаряется. Испарение воды приводит к снижению температуры внутри сосудов. Это позволяет длительное время хранить продукты на жарком климате без использования электроэнергии.
Знание устройства и принципа работы холодильника позволит выполнить несложный ремонт устройства своими руками. Если система настроена правильно, значит прибор будет работать долгие годы. При более сложных неисправностях следует обратиться к специалистам сервисных центров.
- https://sovet-ingenera.com/tech/xolodilniki/princip-raboty-xolodilnika.html
- https://VTeple.xyz/princip-raboty-holodilnika/
- https://tokzamer.ru/novosti/princip-raboty-freonovoj-holodilnoj-ustanovki
- https://bingoschool.ru/manual/princzip-rabotyi-xolodilnika-kratko-kak-ustroen/
- https://TechnoSova.ru/dlja-kuhni/holodilnik/shema-i-princip-raboty/
- https://eti.su/articles/over/over_1534.html
- https://vseproholod.site/ustrojstvo-i-princzip-raboty-holodilnoj-ustanovki/
- https://contur-sb.com/printsip-raboty-freonovoy-holodilnoy-ustanovki/