- Определения простыми словами
- Что такое непрерывный сигнал в информатике?
- Как аналоговый сигнал преобразуется в цифровой и наоборот
- В чем разница между дискретными и непрерывными данными?
- Определение и виды сигналов
- Что такое информация и каковы ее свойства?
- Что такое аналоговые фильтры
- Почему Аналоговый звук лучше цифрового?
- Плюсы и минусы
- История появления термина
- Вычислительная техника
- Звукозапись и телефония
- Электрические измерения
- Примеры отличия дискретной величины от непрерывной
- Как распространяется цифровой сигнал?
- Что такое модуляция
- Что такое непрерывный сигнал по времени?
- Представители
- «Итератор»
- Характеристики
- «МН»
- Особенности непрерывного сигнала
- Что такое дискретные данные?
- Примеры дискретных данных
- Что такое непрерывные данные?
- Примеры непрерывных данных
- Что такое цифровой сигнал физика?
- Как выглядят спектры аналогового и дискретного сигнала
- Что такое дискретный вход?
- Какие системы связи используют цифровой сигнал а какие аналоговый
- Где используется дискретный сигнал?
- Что такое понятность информации?
- Сравнение цифрового и аналогового сигналов
Определения простыми словами
Все природные сигналы — непрерывные. В эту категорию попадают все звуки, запахи, изображения, которые человек извлекает из окружающего мира. Пение птиц и звуки музыкальных инструментов, пролетающая птица и проезжающая машина — все это примеры аналогового способа передачи данных.
Информация, которую получает мозг, поступает в него плавно и непрерывно. Постепенно затухают краски заката, нарастает шум колес приближающегося автомобиля и т.д.
Изначально, человек научился воспроизводить именно аналоговые сигналы. Первое радио и телевидение были созданы, опираясь на естественные методы распространения информации.
Дискретный сигнал отличается от непрерывного аналогового тем, что он передается не плавно, а отдельными порциями-пакетами. Этот метод транспортировки данных придумали и реализовали люди.
На графике ниже, разница показана наглядно.
Отличие дискретного наращения от непрерывного в том, что оно происходит ступенчато. И чем больше промежуток времени между пакетами сигналов, тем больше искажение информации.
Что такое непрерывный сигнал в информатике?
Сигнал называется непрерывным, если его параметр может принимать любое значение в пределах некоторого интервала (рис. 1). Сигнал называется дискретным, если его параметр может принимать конечное число значений в пределах некоторого интервала (рис. 2).
Как аналоговый сигнал преобразуется в цифровой и наоборот
Первой в цифровую форму преобразовали математическую, физическую и компьютерную информацию. Описать формулы и расчеты не составило труда. А вот для преображения аналоговой действительности в цифровые массивы уже потребовались специальные устройства. Ими стали аналого-цифровые преобразователи или сокращенно АЦП. Они предназначены для преобразования различных физических величин в цифровые коды. Обратное действие совершают устройства ЦАП.
Любые цифровые передатчики и приёмники оснащены такими преобразователями. Например, сотовому телефону, поступивший звук необходимо обработать и передать в оцифрованном виде. В то же время необходимо принять от другого абонента код, преобразовать и передать напряжение на динамик. Так же и с изображением на смартфонах и в телевизорах. В любом случае первоначальной информацией выступает напряжение.
Существует много видов АЦП, но самыми распространёнными являются следующие:
- параллельного преобразования;
- последовательного приближения;
- дельта-сигма, с балансировкой заряда.
Преобразования в АЦП понятийно связаны с измерением и сравнением. Кодировка, это процесс сравнения полученных от источника данных с эталоном. То есть полученная аналоговая величина сравнивается с эталонной (с заданным напряжением). Эталоном выступает информация о конкретном цвете, звуке и т.п. Она соответствует заложенным в устройство представлениям о преобразуемом сигнале. Потом данные эталонной величины кодируются для передачи. Во время аналого-цифровой обработки физических превращений сигнала не происходит. С аналогового делается цифровой матрица (модель).
Упрощенно работу любого АЦП можно представить так:
- Измерение через определенные интервалы времени амплитуды напряжения.
- Сравнение с эталоном и формирование данных.
- Отгрузка оцифрованных сведений об изменениях амплитуды на передатчик.
Качество передаваемой информации зависит от двух параметров — точности и частоты измерений. Чем точнее измеряется и зашифровывается входящее напряжение, тем качественней передаваемая информация. Поэтому, имеет большое значение, сколько бит может зашифровать преобразователь. Чем плотнее информационный поток, тем точней передача данных. Это выражается в красках экрана, контрастности картинки и чистоте звука. Следующим важным показателем является дискретизация, то есть частота измерений. Чем чаще, тем меньше провалов в измерениях и необходимости сглаживания. В совокупности, чем чаще и точнее преобразователь может измерять и обрабатывать полученное напряжение, тем он лучше.
В чем разница между дискретными и непрерывными данными?
Дискретные данные включают в себя круглые конкретные числа, которые определяются путем подсчета. Непрерывные данные включают комплексные числа, которые измеряются в течение определенного интервала времени. Простой способ описать разницу между ними – визуализировать график точечной диаграммы в сравнении с линейным графиком.
Когда вы соберете набор круглых определенных чисел, они окажутся на своем месте на графике, похожем на те, что показаны слева. Дискретные данные относятся к отдельным счетным предметам.
Когда вы измеряете определенный поток данных со сложным диапазоном результатов, эти результаты будут обозначены линией в виде диапазона данных (см. Графики справа). Непрерывные данные относятся к изменениям с течением времени, включая концепции, которые не просто подсчитать, но требуют подробных измерений.
Подождите, пока мы немного раскроем эти термины для лучшего понимания.
Определение и виды сигналов
Сигнал – это материальный носитель информации (данных), которая передается от источника к потребителю. Может представлять собой физические сигналы или математические модели.
Сигналы могут быть аналоговыми и дискретными.
Аналоговый (непрерывный) сигнал отражается некоторой физической величиной, изменяющейся в заданном интервале времени, например, тембром или силой звука.
Приведем пример непрерывного сообщения. Человеческая речь, передаваемая модулированной звуковой волной; параметром сигнала в этом случае является давление, создаваемое этой волной в точке нахождения приемника – человеческого уха.
Дискретный (цифровой) сигнал слагается из счетного множества информационных элементов.
Параметр сигнала принимает последовательное во времени конечное число значений.
Набор самых «мелких» элементов дискретного сигнала называется алфавитом, а сам дискретный сигнал называют также сообщением.
Сообщение, передаваемой с помощью таких сигналов – дискретное.
Информация, передаваемая источником – дискретная.
Примером дискретного сообщения может быть процесс чтения книги, информация в которой представлена текстом, т.е. дискретной последовательностью отдельных значков (букв).
Аналоговый сигнал может быть преобразован в дискретный. Такой процесс называется дискретизацией.
Непрерывное сообщение может быть представлено непрерывной функцией, заданной на некотором отрезке [а, b] (рис. 2.1). Непрерывное сообщение можно преобразовать в дискретное (такая процедура называется дискретизацией).
Рис. 2.1. Процесс дискретизации |
Для этого из бесконечного множества значений этой функции (параметра сигнала) выбирается их определенное число, которое приближенно может характеризовать остальные значения. Полученная последовательность значений функции у1, у2, … уn. является дискретным представлением непрерывной функции, точность которого можно неограниченно улучшать путем уменьшения длин отрезков разбиения области значений аргумента.
Таким образом, любое сообщение может быть представлено как дискретное, иначе говоря, последовательностью знаков некоторого алфавита.
Возможность дискретизации непрерывного сигнала с любой желаемой точностью (для возрастания точности достаточно уменьшить шаг) принципиально важна с точки зрения информатики. Компьютер – цифровая машина, т. е. внутреннее представление информации в нем дискретно. Дискретизация входной информации (если она непрерывна) позволяет сделать ее пригодной для компьютерной обработки. [2]
Кодирование сигналов
Для автоматизации работы с данными, относящимися к различным типам, очень важно унифицировать их форму представления – для этого обычно используется прием кодирования, то есть выражение данных одного типа через данные другого типа.
Под кодированием сигнала понимают:
- его представление в определенной форме, удобной или пригодной для последующего использования сигнала;
- правило, описывающее отображение одного набора знаков в другой набор знаков.
Кодированию подлежат как отдельные символы исходного алфавита, так и их комбинации.
Приведем пример.
Дана таблица соответствия между натуральными числами трех систем счисления.
Эту таблицу можно рассматривать как некоторое правило, описывающее отображение набора знаков десятичной системы счисления в двоичную и шестнадцатеричную. Тогда исходный алфавит – десятичные цифры от 0 до 9, а кодовые алфавиты – это 0 и 1 для двоичной системы; цифры от 0 до 9 и символы {A, B, C, D, E, F} – для шестнадцатеричной.
Виды кодирования в зависимости от целей кодирования.
1. Кодирование по образцу используется всякий раз при вводе информации в компьютер для ее внутреннего представления.
Данный вид кодирования применяется для представления дискретного сигнала на том или ином машинном носителе.
Большинство кодов, используемых в информатике для кодирования по образцу, имеют одинаковую длину и используют двоичную систему для представления кода (и, возможно, шестнадцатеричную как средство промежуточного представления).
В данном виде кодирования используются:
a) прямые коды.
Применяются для представления в ЭВМ числовых данных и используют двоичную систему счисления. Могут использоваться для кодирования и нечисловых данных.
b) ASCII–коды.
Наиболее распространенным является код ASCII (American Standard Code for Information Interchange), который используется для внутреннего представления символьной информации в операционной системе MS DOS, в Блокноте операционной системы Windows’xx, а также для кодирования текстовых файлов в Интернет.
c) коды, учитывающие частоту символов.
В некоторых системах кодирования значение кода определяется частотой кодируемого символа. Как правило, такие частоты известны для букв алфавитов естественных языков, например, английского или русского, и используются уже давно при размещении клавиш клавиатуры: наиболее часто используемые буквы располагаются на клавишах в середине клавиатуры, наиболее редко используемые – на периферии, что создает удобство работы для человека.
2. Криптографическое кодирование, или шифрование используется, когда нужно защитить информацию от несанкционированного доступа.
3. Эффективное, или оптимальное, кодирование используется для устранения избыточности информации, т.е. снижения ее объема, например, в архиваторах.
Для кодирования символов исходного алфавита используют двоичные коды переменной длины: чем больше частота символа, тем короче его код. Эффективность кода определяется средним числом двоичных разрядов для кодирования одного символа.
4. Помехозащитное, или помехоустойчивое, кодирование используется для обеспечения заданной достоверности в случае, когда на сигнал накладывается помеха, например, при передаче информации по каналам связи.
В качестве базового кода, который подвергается помехозащитному кодированию, используется двоичный код постоянной длины. Такой исходный (базовый) код называется первичным, поскольку подвергается модификации.
Данные
Термин «данные»
Под данными понимается:
1) представление информации в формализованном (закодированном) виде, позволяющем хранить, передавать или обрабатывать её с помощью технических средств;
2) зарегистрированные сигналы. [3]
Носителями данных могут быть:
- бумага – самый распространённый носитель. Данные регистрируются путем изменения оптических характеристик ее поверхности;
- CD–ROM. Используется изменение оптических свойств в устройствах, осуществляющих запись лазерным лучом на пластмассовых носителях с отражающим покрытием;
- магнитные ленты и диски – используют изменение магнитных свойств. [3]
Операции с данными
С данными можно производить различные операции:
- сбор данных – накопление данных с целью обеспечения достаточной полноты информации для принятия решений;
- формализация данных – приведение данных, поступающих из разных источников, к одинаковой форме, чтобы сделать их сопоставимыми между собой, то есть повысить их уровень доступности;
- фильтрация данных – отсеивание «лишних» данных, в которых нет необходимости для принятия решений; при этом должен уменьшаться уровень «шума», а достоверность и адекватность данных должны возрастать;
- сортировка данных – упорядочение данных по заданному признаку с целью удобства использования; повышает доступность информации;
- группировка данных – объединение данных по заданному признаку с целью повышения удобства использования; повышает доступность информации;
- архивация данных – организация хранения данных в удобной и легкодоступной форме; служит для снижения экономических затрат на хранение данных и повышает общую надежность информационного процесса в целом;
- защита данных – комплекс мер, направленных на предотвращение утраты, воспроизведения и модификации данных;
- транспортировка данных – прием и передача (доставка и поставка) данных между удаленными участниками информационного процесса; при этом источник данных в информатике принято называть сервером, а потребителя – клиентом;
- преобразование данных – перевод данных из одной формы в другую или из одной структуры в другую. [3]
Что такое информация и каковы ее свойства?
Информация — осознанные сведения об окружающем мире, которые являются объектом хранения, преобразования, передачи и использования. Сведения — это знания, выраженные в сигналах, сообщениях, известиях, уведомлениях и т. д. Каждого человека в мире окружает море информации различных видов.
Что такое аналоговые фильтры
Ds1054z цифровой осциллограф
Аналоговые фильтры используютрезонанс в электрических цепях. Комбинации резисторов и индукторов обеспечивают разные уровни импеданса для токов с разными частотами. Следовательно, они могут использоваться в схемах для подавления нежелательных частотных составляющих в сигнале.
Например,полосовой фильтр подавляет частоты, которые находятся за пределами заданного диапазона частот. Диаграмма ниже показывает, как такой фильтр может быть построен с использованием конденсаторов (C) и катушек индуктивности (L):
Полосовой фильтр, который подавляет частоты, не входящие в его диапазон.
И в выходном сигнале все частоты, которые не находятся в пропускная способность
Диапазон (B) подавляется:
Полосовой фильтр подавляет частоты, которые не находятся в области, называемой шириной полосы.
Аналоговые фильтры могут фильтровать сигналынепрерывно, В некоторых случаях это дает небольшое преимущество аналоговым фильтрам, гдевсе нежелательные частоты должны быть удалены. Способность цифрового фильтра делать это зависит от частоты дискретизации (см. Ниже).
Почему Аналоговый звук лучше цифрового?
Преимуществом аналогового сигнала является то, что именно в аналоговом виде мы воспринимаем звук своими ушами. … Недостатком аналогового сигнала являются возможности по хранению, передаче и тиражированию сигнала. При записи на магнитную ленту или винил, качество сигнала будет зависеть от свойств ленты или винила.
Плюсы и минусы
Когда человечество только открыло для себя дискретные случайные величины, качество подобных сигналов было намного хуже, чем у привычных непрерывных.
Пакеты информации передавались с задержками и часто терялись.Разница между качеством звуковой дорожкой, записанной в цифровом MP3 и стандартном аудиоформате — была заметна даже дилетанту.
На сегодняшний день ситуация кардинально изменилась. Аналоговые сигналы достигли своего «потолка», в то время как дискретные далеко шагнули вперед.
Сейчас в список достоинств непрерывной передачи данных можно внести лишь более реалистичное предоставление данных. И то, настоящий аналоговый звук от дискретного сможет отличить только человек с очень тонким слухом, либо профессиональный звукорежиссер. Большинству обычных пользователей эта разница незаметна.
Этот сомнительный плюс перевешивают два существенных минуса:
- множество помех даже на небольших расстояниях;
- информация не кодируется (ее очень легко перехватить).
К списку достоинств прерывистого способа передачи относят:
- небольшое количество данных (нужен меньший объем памяти для хранения);
- помехоустойчивость;
- шифровка информации;
- возможность передачи данных на большие расстояния практически без искажений.
Основной недостаток данного метода — при большом количестве помех происходит полная потеря сигнала.
История появления термина
Появление термина, обозначающего такой способ передачи данных, тесно связано с такими сферами, как вычислительная техника, телефония и звукозаписывающая индустрия, электрические измерения.
Вычислительная техника
В 40-х годах создаются первые вычислительные системы, предназначенные для сбора и обработки цифровой информации. В начале 80-х годов с появлением новых моделей компьютеров на базе процессоров Intel возможности вычислительной техники расширились. Именно в этот период появляется данный термин.
Звукозапись и телефония
Понятие непрерывного способа передачи данных изначально связано с телефонией. Непрерывные колебания поступают на динамик устройства, становятся электрическим аналогом, затем преобразуются в сигнал, подобный голосу.
Электрические измерения
Непрерывный поток воспроизводится приемным устройством пропорционально таким электрическим параметрам, как напряжение, сила тока. Именно с началом измерения указанных выше электрических величин связывают появление этого термина.
Примеры отличия дискретной величины от непрерывной
Казалось бы, аналоговый метод передачи данных намного лучше, но это не так. При непрерывной трансляции информация передается «как есть», со всеми помехами и искажениями.
На нее влияет множество факторов: рельеф, погодные условия, помехи от других устройств и т.д. Все так же, как и в реальной жизни — громкая музыка или шум от газонокосилки могут помешать услышать собеседника даже на малом расстоянии.
Дискретные сообщения доставляются направленными пакетами. Здесь есть только два варианта: пакет дошел до адресата, либо нет.
Простой пример — телефонная связь.
В старых проводных телефонах использовался аналоговый метод передачи данных. Поэтому нередко возникали ситуации, в которых собеседника вроде и слышно, но через пелену рыпения, шипения и посторонних звуков.
Современная мобильная связь — это дискретный канал. Да, она тоже не идеальна, но при потере пакетов сигнал просто не доходит до получателя (в телефонной трубке тишина, либо разговор обрывается на середине).
С телевидением та же ситуация: в старом формате — двоит, снежит, но идет, а в новом — либо показывает качественно, либо картинка замирает и изображение пропадает вовсе.
Как распространяется цифровой сигнал?
Чтобы передать цифровой сигнал по аналоговому каналу (радио или электрическому), его преобразуют, то есть модулируют. А при приеме — обратно демодулируют. Цифровой сигнал обладает важным свойством, которое заключается в возможности полностью его регенерировать в ретрансляторе.
Что такое модуляция
Аналоговый сигнал
Предположим, вы хотите транслировать свою музыку так, чтобы ее могли слышать люди из километров. Наивно, вы можете просто увеличить громкость. Однако звук исчезнет, если вы далеко не уедете, и люди, которые не хотят слышать вашу музыку, также будут вынуждены слушать!
Вместо этого подумайте о том, чтобы «преобразовать» вашу звуковую волну в электромагнитную и передавать музыку таким образом. Теперь люди, которые хотят слушать, могут использовать преобразователь для преобразования электромагнитных волн обратно в звук, и люди, которые не хотят слушать, не будут обеспокоены. Однако возникает проблема, когда другие люди также начинают транслировать свою музыку. Их электромагнитные волны будут мешать вашим, и ваши слушатели будут в конечном итоге смешивать звуки.
Так как радиостанции это делают? У каждого из них есть частота, и они передают свои сигналы, используя эту частоту. Человек, который хочет слушать определенную частоту, должен затем «настроиться» на эту частоту, используя свое собственное радио. Но сейчас есть другая проблема. Люди могут слышать звуки в широком диапазоне частот. Как радиостанции могут передавать все эти разные частоты, используя только одну частоту? Ответ: модуляция.
Волна с частотой радиостанции называется сигналом несущей радиостанции. Это просто синусоида без интересной информации. Информационный сигнал — это сигнал, содержащий данные, которые мы хотим передать (например, музыку в случае радиостанции). Радиостанция изменяет свойства своего несущего сигнала в зависимости от информационного сигнала, и этот процесс называется модуляцией. Модулированный сигнал транслируется, и радиостанции слушателей должны теперь демодулировать сигнал, чтобы извлечь звуковую информацию из принятого сигнала.
Что такое непрерывный сигнал по времени?
Непрерывный сигнал или непрерывное время сигнал является изменяющимся количеством (а сигнал ), область, которая часто занимает много времени, является континуумом (например, подключенный интервал из чисел ).
Представители
Польский электронный аналоговый компьютер «AKAT-1»
Среди аналоговых вычислительных устройств можно выделить:
- FERMIAC
- ZAM
«Итератор»
«Итера́тор» — специализированная АВМ, предназначенная для решения линейных краевых задач систем линейных дифференциальных уравнений. Разработана в Институте кибернетики АН УССР в 1962 году.
«Итератор» решает краевую задачу итерационным способом Ньютона, сводящим её к решению нескольких дифференциальных уравнений с заданными начальными условиями. Этот алгоритм заключается в определении матрицы первых производных по компонентам вектора начальных условий и автоматического поиска решения краевой задачи с использованием этой матрицы. Благодаря примененному методу, сходимость итерационного процесса с заданной допустимой ошибкой решения обеспечивается за три-четыре итерации.
Кроме систем дифференциальных уравнений с постоянными и переменными коэффициентами 2n
-го порядка с линейными краевыми условиями, «Итератор» решает системы линейных алгебраических уравнений
n
-го порядка с произвольной матрицей коэффициентов.
Характеристики
- максимальный порядок решаемой системы дифференциальных уравнений — 8;
- максимальное число точек в интервале интегрирования, входящих в краевые условия — 3;
- максимальная погрешность — до 3 %;
- число операционных усилителей — 21;
- потребляемая мощность — 1кВ·A.
«МН»
Семейство аналоговых вычислительных машин. Название является аббревиатурой слов «модель нелинейная». Были предназначены для решения задач Коши для обыкновенных дифференциальных уравнений. Наиболее совершенным представителем машин этого ряда была машина «МН-18» — АВМ средней мощности, предназначенная для решения методами математического моделирования сложных динамических систем, описываемых дифференциальными уравнениями до десятого порядка в составе аналого-цифрового вычислительного комплекса или самостоятельно. Схема управления позволяет производить одновременно и разделенный запуск интеграторов по группам, однократное решение задач и решение задач с повторением. Допустимо объединение до четырёх машин МН-18 в единый комплекс.
Особенности непрерывного сигнала
Если дискретный сигнал квантуется как по времени, так и по уровню, то его называют цифровым сигналом
Сигнал считается непрерывным, если в заданных пределах он может иметь любое значение. С математической точки зрения это означает, что НС можно представить в виде непрерывной функции. Примерами такого сигнала является получаемый с микрофона сигнал о давлении на его мембрану звуковой волны или сигнал от термопары об измеряемой температуре.
Аналоговые системы для передачи информации, использующие НС, имеют следующие недостатки:
- пониженную помехозащищённость — это свойство связано с тем, что из-за непрерывности системы помеху, попавшую в сигнал, невозможно отличить от самого сигнала;
- затруднения при передаче сигналов управления;
- трудности при сопряжении с компьютером и другими цифровыми устройствами;
- трудности шифрования.
Что такое дискретные данные?
Некоторые синонимы слова «дискретный» включают: разъединенный, отдельный и отдельный. Их можно легко применить к идее дискретных данных.
Мы собираем данные, чтобы найти взаимосвязи, тенденции и другие концепции. Например, если вы отслеживаете количество отжиманий, которые вы делаете каждый день в течение месяца, основной целью является оценка вашего прогресса и скорости улучшения.
С учетом сказанного, ваш дневной счет – это дискретное, изолированное число. Нет четкого диапазона того, сколько вы можете сделать за один день, поэтому отношения остаются неопределенными. Чем больше информации вы собираете с течением времени, тем больше идей вы можете сделать, например, что среднее количество отжиманий, которые вы делали на прошлой неделе, составляло 15 отжиманий в день, что на 5 отжиманий в день больше, чем неделей ранее. Между тем, сами числа отжиманий – это целые, круглые числа, которые нельзя разбить на более мелкие части.
Забавное практическое правило состоит в том, что во многих случаях дискретным данным может предшествовать «количество».
Примеры дискретных данных
Некоторые примеры дискретных данных, которые можно собрать:
- Количество клиентов, купивших разные товары
- Количество компьютеров в каждом отделе
- Количество товаров, которые вы покупаете в продуктовом магазине каждую неделю.
Дискретные данные также могут быть качественными. Национальность, которую вы выбираете в форме, – это отдельные данные. Национальность каждого на вашей работе, если сгруппировать вместе с помощью программного обеспечения для работы с электронными таблицами, может быть ценной информацией при оценке вашей практики найма.
Посмотреть бесплатное программное обеспечение для электронных таблиц с самым высоким рейтингом →
Национальная перепись состоит из дискретных данных, как качественных, так и количественных. Подсчет и сбор этой идентифицирующей информации углубляет наше понимание населения. Это помогает нам делать прогнозы о будущем, документируя историю. Это отличный пример силы дискретных данных.
Что такое непрерывные данные?
Непрерывные данные относятся к нефиксированному количеству возможных измерений между двумя реалистичными точками.
Эти числа не всегда чистые и аккуратные, как те, которые содержатся в дискретных данных, поскольку они обычно собираются на основе точных измерений. Со временем измерение определенного объекта позволяет нам создать определенный диапазон, в соответствии с которым мы можем разумно ожидать сбора большего количества данных.
Непрерывные данные – это все о точности. Переменные в этих наборах данных часто имеют десятичные точки, а число справа растянуто, насколько это возможно. Этот уровень детализации имеет первостепенное значение для ученых, врачей и производителей, и это лишь некоторые из них.
Примеры непрерывных данных
Некоторые примеры непрерывных данных включают:
- Вес новорожденных малышей
- Суточная скорость ветра
- Температура морозильной камеры
Когда вы думаете об экспериментах или исследованиях, включающих постоянные измерения, они, вероятно, в некоторой степени связаны с непрерывными переменными. Если где-нибудь в таблице у вас есть число вроде «2,86290», это не то число, которое вы могли бы легко вычислить сами – подумайте об измерительных устройствах, таких как секундомеры, весы, термометры и тому подобное.
Задача с использованием этих инструментов, вероятно, применима к непрерывным данным. Например, если мы отслеживаем каждого бегуна на Олимпийских играх, время будет отображаться на графике вдоль соответствующей линии. Несмотря на то, что с годами наши спортсмены становятся быстрее и сильнее, никогда не должно быть выбросов, искажающих остальные данные. (Даже Усэйн Болт всего на пару секунд быстрее, чем историческое поле, если говорить об этом.)
На этой линии есть бесконечные возможности (например, 5,77 секунды, 5,772 секунды, 5,7699 секунды и т. Д.), Но каждое новое измерение будет постоянно находиться где-то в пределах диапазона.
Не каждый пример непрерывных данных будет аккуратно попадать в прямую линию, но со временем диапазон станет более очевидным, и вы можете сделать ставку на новые точки данных, застрявшие внутри этих параметров.
Что такое цифровой сигнал физика?
Цифровой сигнал представлен последовательностью цифровых значений. Чаще всего сейчас применяются двоичные цифровые сигналы, так как они используются в двоичной электронике и легче кодируются. В отличие от предыдущего типа сигнала цифровой сигнал имеет два значения «1» и «0».
Как выглядят спектры аналогового и дискретного сигнала
Изображение сигналов можно представить как две функции. На рисунке наглядно представлено, чем отличается непрерывный сигнал от дискретного. Напряжение исходного изменяется плавно, обработанного прерывисто. Спектр дискретного периодически ступенчато совпадает с непрерывным.
Изменения дискретного происходят резко, через определённый период времени. Уровень в цифровой системе зашифровывается и любую величину напряжения описывают двоичным кодом. От частоты измерений зависит сглаженность преобразования и оригинальность передаваемых данных. Чем точнее описан уровень сигнала и чем чаще проводится и обрабатывается измерение, тем точнее совпадает спектр начального и переданного сигналов.
Что такое дискретный вход?
Дискретный — значит, воспринимающий либо единицу, либо ноль. Выключатель подключается к дискретному входу, так как он либо нажат, либо не нажат, других вариантов нет. Дискретный вход может либо ожидать появления какого-то напряжения, либо замыкания входа на землю.
Какие системы связи используют цифровой сигнал а какие аналоговый
Несмотря на архаичность аналоговая технология ещё используется для телефонной и радио связи. Многие проводные сети до сих пор остаются аналоговыми. В основном это традиционные телефонные линии местных операторов. Но, для магистральной передачи данных связи уже повсеместно используют цифровые каналы. Так же аналоговая технология применяется в простых и дешёвых переносных радиостанциях.
Во всех вновь создаваемых системах используют цифровую технологию обработки сигнала. Это оптоволоконные и проводные линии, сигнализация и телеметрия, военная и гражданская промышленная связь. И конечно же на цифровое вещание переходит телевидение. Аналоговый способ передачи данных исчерпал себя. На смену пришла новая высококачественная и защищенная связь.
Где используется дискретный сигнал?
Дискретные сигналы используются для записи на известные носители, такие как CD, DVD и так далее. Их читают цифровые проигрыватели, мобильные телефоны, модемы и практически любое техническое оборудование, которым все пользуются ежедневно.
Что такое понятность информации?
Информация становится понятной, если она выражена языком, на котором говорят те, кому предназначена эта информация.
Сравнение цифрового и аналогового сигналов
Сигнал радиостанции телецентра или мобильной связи может передаваться в цифровой и аналоговой форме. Например звук и изображение, это аналоговые сигналы. Микрофон и камера воспринимают окружающую действительность и преобразуют в электромагнитные колебания. Частота колебаний на выходе зависит от частоты звука и света, а амплитуда передачи от громкости и яркости.
Изображение и звук, преобразованные в электромагнитные колебания распространяются в пространство передаточной антенной. В приемнике идёт обратный процесс — электромагнитных колебаний в звук и видео.
Распространению электромагнитных колебаний в эфире препятствуют облака, грозы, рельеф местности, промышленные электронаводки, солнечный ветер и прочие помехи. Частота и амплитуда нередко искажаются и сигнал от передатчика к приемнику приходит с изменениями.
Голос и изображение аналогового сигнала воспроизводятся с искажениями, вызванными помехами, а фоном воспроизводится шипение, хрипы и цветовое искажение. Чем хуже прием, тем отчетливее эти посторонние эффекты. Но если сигнал дошёл, его хоть как то видно и слышно.
При цифровой передаче изображение и звук перед трансляцией в эфир оцифровываются и до приёмника доходят без искажений. Влияние посторонних факторов минимально. Звук и цвет хорошего качества либо их нет вовсе. Сигнал гарантированно поступает на определенное расстояние. Но для дальней передачи необходим ряд ретрансляторов. Поэтому для передачи сотового сигнала антенны ставят как можно ближе друг к другу.
Наглядным примером отличия двух типов сигналов может служить сравнение старой проводной телефонной и современной сотовой связи.
Проводная телефония не всегда хорошо работает даже в пределах одного населённого пункта. Звонок на другой конец страны это испытание голосовых связок и слуха. Нужно докричаться и прислушаться к ответу. Шумы и помехи отфильтровываем ушами, недостающие и искаженные слова додумываем сами. Хоть и плохой звук, но есть.
Звук в сотовой связи отлично слышно даже с другого полушария. Оцифрованный сигнал передаётся и принимается без искажений. Но и он не без изъянов. Если случаются сбои, то звук не слышен вовсе. Выпадают буквы, слова и целые фразы. Хорошо, что это бывает редко.
Примерно то же самое с аналоговым и цифровым телевидением. Аналоговое использует сигнал подверженный помехам, ограниченного качества и уже исчерпало возможности развития. Цифровое не искажается, обеспечивает звук и видео отличного качества, постоянно совершенствуется.
- https://raznoved.com/tekhnologii/otlichie-nepreryvnogo-signala-ot-diskretnogo.html
- https://gresgroup.ru/chem-otlichayutsya-nepreryvnyy-i-diskretnyy-signal/
- https://ZvonDoZvon.ru/tehnologii/diskretnyi-i-analogovyi-signal
- https://asu-analitika.ru/diskretnye-i-nepreryvnye-dannye-v-chem-raznica/
- https://srtmx.ru/elektro-teoriya/signal-opredelenie-informatika.html
- https://rentps3.ru/tehnika/chem-otlichaetsya-nepreryvnyj-signal-ot-diskretnogo.html
- https://rmp-energo.ru/praktika/chem-otlichaetsya-nepreryvnyj-signal.html
- https://RadioLisky.ru/sovety-novichkam/chem-otlichaetsya-nepreryvnyj-signal.html